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PREFACE 
 
During February 2015 the International Organising Committee of IWMS-2015 was encouraged to 
consider the publication of a Pre-Workshop Proceedings. At that stage we had not made any final 
decisions regarding the publishingof a formal refereed proceedings as we had not been able to 
reach any commitments with a publisher or a journal.  However, we wanted to give participants 
the opportunity to present either an extended abstract or a formal paper.  With the pressure of time 
we were conscious that a formal refereeing process prior to the beginning of the Workshop was 
not going to be possible. 
 
The International Organising Committee was very grateful for the offer of financial support from 
Professor Kai-Tai Fang to assist us in our quest. He also arranged with Associate Professor Yong-
Dao Zhou to provide technical support to undertake such an exercise. As a consequence it was 
decided to proceed with the publication of a Pre-Workshop non-refereed Proceedings. Following 
the offer from the journal Special Matrices to publish a formal refereed Proceedings for the 
International Workshop, we decided to name this publication as the IWMS-2015 Souvenir Booklet. 
 
Participants of the Workshop were invited to submit a paper or an extended abstract on their 
intended presentation. We did not make it mandatory to make a submission. The papers in this 
booklet have been reproduced exactly as received from the authors (other than to ensure that they 
conformed with a standard presentation as per a formal template). 
 
The presentations are presumed to be essentially that which will be given in the Workshop. 
Although the papers were scrutinised prior to publication for suitability, the papers have not been 
formally refereed and no claim is made by the Editors or the International Organising Committee 
as to the accuracy or originality of the contents of the papers. 
 
This Souvenir Booklet has not been copyrighted by the International Organizing Committee of the 
IWMS-2015although some authors have retained the copyright of their material.  If no copyright 
notice is indicated it is presumed that the author(s) have not copyrighted their material and the 
contents may be freely copied provided the source is cited.  Publication in this volume of any 
paper does not preclude the authors from submitting papers to other publications elsewhere based 
on their submissions, including the formal Workshop Proceedings.  
 
A recommended citation of articles in this publication is of the form:  
Puntanen, S. & Styan, G.P.H. (2015). “Twenty-six years of the International Workshop on 
Matrices and Statistics (IWMS): 1990-2015”. In: Souvenir Booklet of the 24th International 
Workshop on Matrices and Statistics, (25-28 May 2015), Haikou, Hainan, China. Pages x-y. Ed. 
Jeffrey J. Hunter. 
 
I would like to express my thanks to those participants who have taken this opportunity to present 
their work in this publication. The support of Associate Professor Yong-Dao Zhou who has single-
handedly compiled the booklet from the submissions is gratefully appreciated. I would also like to 
thank Dr Simo Puntanen has worked with me in screening the submissions and also to Professor 
Kai-Tai Fang not only for pushing us to put together this publication but for his generous financial 
support without which this would not have been possible. I also appreciate the assistance of 
Professor Chuanzhong Chen in arranging for the design of a cover page for the booklet. 

 
 
Jeffrey J Hunter 
Editor,IWMS-2015 Souvenir Booklet 
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PREFACE 

 

The first workshop in the “International  Workshop on Matrices and Statistics” (IWMS) series took 
place at the University of Tampere in Tampere, Finland, 6 – 8 August 1990, and the IWMS has been 
held annually since. The IWMS has made great contributions to the promotion of the development of 
the Matrices and Statistics discipline. I am very excited that the 24th International workshop (2015) on 
Matrices and Statistics will be held at the Hainan Normal University School of Mathematics and 
Statistics. The workshop will have a catalytic role in promoting the development of Metrics and 
Statistics discipline in China, especially it will drive a rapid development of Hainan’s related scientific 
fields. It also provides us an opportunity to make our contributions to the promotion of the development 
of the Matrices and Statistics discipline.  

Since received the invitation to host the 2015 24th IWMS in October, 2013, we have been making every 
effort for more than one year and finally completed all of the preparatory work. I hereby express my 
gratitude to Professors Kai-Tai Fang, Jeffrey J. Hunter and Simo Puntanen who had done a great deal of 
preparatory work for the workshop. I would also like to thank members of the organizing team, in 
particular Ms. Wang Li, who had put their hard work for the various preparatory work. Hainan Province 
is a very beautiful area. It has plenty of sunlight, the sky-blue ocean and beautiful beach. School of 
Mathematics and Statistics, Hainan Normal University has a long history of 66 years. It is our honor to 
host IWMS-2015 here. We hope that the workshop will be of a great success; the participants will be 
enjoying the workshop and have a great time. The beautiful season in Hainan is between December and 
March. It is regretful that the workshop is not able to be held during the best season. The month of May 
is getting hot in Hainan. 

Finally, I would like to say that, after experiencing several twists and turns, the IWMS-2015 Souvenir 
Booklet becomes quite a bonus for all of us. Professors Jeffrey J. Hunter, Kai-Tai Fang and Simo 
Puntanen were considering the publication of a Pre-Workshop Proceedings during February 2015. The 
Pre-Workshop non-refereed Proceedings will not preclude authors from submitting their papers to other 
journals for publication. Professor Jeffrey J. Hunter contacted De Gruyter Open Ltd. in March, 2015 
which agreed to publish the Proceedings of the 24th International Workshop on Matrices and Statistics 
free of charge. However the Proceedings will not be formally published until after the workshop, 
possibly one or two year later. It was decided that the IWMS-2015 Souvenir Booklet was printed before 
the workshop according to the original plan.   

Again, I would like to thank Professors Kai-Tai Fang, Jeffrey J. Hunter, Simo Puntanen and Yong-Dao 
Zhou for their efforts for the production of the Souvenir Booklet, especially Professor Kai-Tai Fang for 
his financial support. 

 

Chuanzhong Chen 

Chair, Local Organizing Committee 
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A Conversation with Kai-Tai Fang

Agnes W. L. Loie1 Lucinda Li2,∗ Simo Puntanen3,†

George P. H. Styan4,‡

1Information and Public Relation Office, Hong Kong Baptist University, Hong Kong
2BNU-HKBU United International College, Zhuhai, 519085, China
3School of Information Sciences, FI-33014 University of Tampere, Finland
4Department of Mathematics and Statistics, McGill University, Montréal, Canada H3A 2K6

Abstract Kai-Tai Fang was born in 1940 in Taizhou city, in Jiangsu Province in eastern China. He
received his secondary education at the renowned Yangzhou High School in Jiangsu. In 1957, he entered
Peking University to read mathematics and in 1963 he undertook graduate studies at the Institute of
Mathematics, Academia Sinica, Beijing. After graduation from the Institute of Mathematics, Academia
Sinica, in 1967, Kai-Tai Fang was appointed Assistant Researcher in the Institute of Mathematics,
Academia Sinica, a position he held until 1978 when he was promoted to Assistant Professor. In the
following year, he was transferred to the Institute of Applied Mathematics, Academia Sinica, shortly
after which he was promoted to Associate Professor in October 1980. In 1984, Kai-Tai Fang was
appointed Associate Director of the Institute and in July 1986, he became a Professor.

During 1990–2005, Kai-Tai Fang was working in various leading positions in the Hong Kong Baptist
University (HKBU), at the Department of Mathematics and at the Statistics Research and Consultancy
Centre. From 2006 onwards he has been the Director of the Institute of Statistics and Computational
Intelligence, BNU-HKBU United International College, Zhuhai Campus of Beijing Normal University
(BNU).

Sections 1–7 of this conversation appeared partly in Loie (2005) and that part was extended by
Lucinda Li in 2014. The article of Loie (2005) was published in Fan & Li (2005), a monograph being
dedicated to Professor Fang on his 65th birthday in June 2005. Most of the articles in that book
were presented at the International Conference on Statistics in Honor of Professor Kai-Tai Fang’s
65th Birthday, 20–24 June 2005, Hong Kong. The permit for reproduction of Loie (2005) by the
World Scientific Publishing Company is gratefully acknowledged. Section 8 is based on communication
between Kai-Tai Fang, Lucinda Li, Simo Puntanen and George P. H. Styan which took place in autumn
2014 and spring 2015.

∗Email: lucindali@uic.edu.hk
†Corresponding author. Email: simo.puntanen@uta.fi
‡Email: geostyan@gmail.com

Souvenir Booklet of the 24th International Workshop on Matrices and Statistics, 
25-28 May 2015, Haikou, Hainan, China. Pages 1-39. Ed. Jeffrey J. Hunter. 
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Photograph 1: Professor Kai-Tai Fang in Toronto, August 2013.
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1 Some Background
Professor Kai-Tai Fang has received several awards for his statistical works, which

have had a profound effect on developments in a wide range of fields. In 1982 he was
awarded the special prize of the Ministry of Light Industry for the standardization of adult
Chinese dress. In 1984, his unified approach to the distribution of restricted occupancy
problems won him the second-class prize for Science & Technology of Academia Sinica.
Kai-Tai Fang’s precision test methodology and determination gained him second-class prize
for National Standardization in 1988. His solutions to the distribution of some random
military coverage problems also won him another Science & Technology prize from the
Academia Sinica the following year.

In 1992, Kai-Tai Fang received a first-class award for Most Excellent Textbook from
the State Statistical Bureau of the PRC for his authorship of Statistical Distributions
(Fang & Xu, 1987). In the same year, his book Generalized Multivariate Analysis (Fang
& Zhang, 1990) won him a special nationwide award for Most Excellent Book in China
by the Government Information and Publication Administration, Beijing. In 1998, the
number of citations of Kai-Tai’s works reached the ninth highest in the country, according
to the Chinese Science Citation Database.

In Hong Kong, Kai-Tai Fang was presented with the President’s Award for Outstand-
ing Performance in Scholarly Work by Hong Kong Baptist University in 2001. He was
made an honorary member of the Hong Kong Statistical Society in 2002. Two years later
in 2004, he was named the Outstanding Author by the Science Press in Beijing. In 2008,
together with Professor Yuan Wang, Kai-Tai Fang was presented the highly honorable
State Natural Science Award at the Second Level, the highest level award given in that
year.

Later in 2012, he was awarded Guangdong Excellent Teacher and Zhuhai Advanced
Teacher by the Guangdong Government and Zhuhai Government, respectively, for his
teaching excellence. That was further enhanced by the National Statistical Research Award
at the First Level conferred to him for his book Design and Modeling of Experiments, co-
written with Min-Qian Liu and Yong-Dao Zhou in 2013; see Fang, Liu & Zhou (2011).
The most recent honor was the 2014 ICSA Distinguished Achievement Award given by
the International Chinese Statistical Association (ICSA), for his outstanding achievements
in statistical research and teaching, and his contribution to the successful founding of the
association.

Kai-Tai Fang has authored and co-authored 22 textbooks and monographs, published
more than 250 research papers, 9 papers in mathematical/statistical culture and 45 statis-
tics popularization papers. He has served on numerous editorial boards, including Acta
Mathematicae Applicatae Sinica, Statistics & Probability Letters, Statistica Sinica, Journal
of Multivariate Analysis and International Statistical Review. He was the Editor-in-Chief
of the book series “Modern Applied Mathematics Methods” in China from 1990 to 2003
and has been the Editor-in-Chief for the book series “Statistics Textbook Series for Higher
Education” since 2010.

Kai-Tai Fang has been instrumental in organizing several influential conferences and
workshops, both internationally and nationally. He has supervised the research of many
graduate students and provided useful advice, encouragement and collaboration for stu-
dents and their peers around the world. In honor of his scholarly contributions, Kai-Tai
Fang has been elected a Fellow of the Institute of Mathematical Statistics in 1992 and a
Fellow of the American Statistical Association in 2001. The latter honored him “for (his)
outstanding contributions to multivariate analysis, quasi-Monte Carlo methods and design
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of experiments; for (his) leadership in statistical education, consultation and administra-
tion; and for editorial service”. He has also been elected a Member of the International
Statistical Institute in 1985.

2 Early Life, Interest in Mathematics: 1951–57
Loie: When did you start to develop an interest in mathematics and statistics? Did it
have anything to do with your family background?

Fang: Not really. Shortly after I was born, World War II broke out and it was an era of
complete chaos. My parents took the seven of us to find refuge in rural villages. After the
war, things were still chaotic and a formal education system was not in place. The teachers
were not serious about teaching and that gave us a perfect excuse to follow suit with regard
to learning. I remember that because of a shortage of space and manpower, two classes
of different levels shared the same classroom and the same teachers. That meant that the
teacher could only devote half his time to teaching us and the other half to teaching the
higher level. We lacked interest and the desire to study hard. We aimed only at a mere
pass. It was not until headmaster Konghou Wang stepped into our classroom that I took a
positive twist in my learning attitude. It was also then that I began to develop an interest
in mathematics.

Loie: In what way did he inspire you?

Fang: Every day Mr. Wang would give an extra 30-minutes’ tuition for our grade six
class and he would come up with a list of questions for us to work on. Those who finished
first and got all the answers right would be allowed to leave the classroom to play. The
questions he set were far from routine and were in fact pretty interesting. There was one
that I remember in particular. The question was a farmer who was selling a basket of eggs.
He approached the first family who bought half the basket of eggs plus half an egg. The
second family bought half of the remaining total plus half an egg. The third bought the
remaining half of the total plus half an egg, then the whole basket of eggs was sold out.
How many eggs were there in the basket? It did not take me long to come up with the
answer: seven. I was the first to hand in the answer and was instantly allowed to go out
and play. Even my elder sister, who was in the same class and ranked first in class, could
not get the answer right.

That was the first time in my life that I discovered my strength and competitiveness;
it was also the first time I realised I had an edge over my classmates. After that, I
was almost always the first to leave the classroom. This self-discovery, coupled with Mr.
Wang’s recognition, worked miracles in building up my confidence and had a far-reaching
impact on my self-esteem.

Loie: Would you regard Mr. Wang your first mentor?

Fang: Indeed he was. He was instrumental in stimulating my interest in mathematics, an
area that I undertook as my lifelong career.

Loie: What happened after that?

Fang: In 1951, I was admitted to Yangzhou High School in Jiangsu Province, one of
the most reputable, well-established secondary schools in the whole nation. The school
adopted a serious and professional manner and they (the school board) even employed
university professors to teach us. The deputy headmaster, for example, was a famous

Agnes W. L. Loie, Lucinda Li, Simo Puntanen, George P. H. Styan
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Photograph 2: Kai-Tai Fang as three years old.

Photograph 3: Kai-Tai Fang (2nd row from top, 5th from left) and other senior high graduates of
Yangzhou High School in 1957.
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English Professor. The quality of the teachers was exceptional and they attached great
emphasis to independent thinking. The school had produced many famous graduates such
as Zemin Jiang, Jiaomu Hu who was Mao Zedong’s secretary; and more than 10 members
of the Chinese Academy of Sciences.

Loie: Was your interest in mathematics further enhanced here?

Fang: Yes. I met my second teacher who deepened my passion for mathematics. He was
Guangzhao Fang. He adopted an enlightened approach by first asking questions before
giving a lecture. This was to inspire us to think. I was always among the first two to
answer the questions. His lectures were stimulating and I was captivated by what he had
to say. When I was invited by the school to give a talk on how to learn mathematics in
the late 1980s, I was so pleased to meet Mr. Fang again and I highlighted his teaching
approach in my talk.

Loie: I heard that Yangzhou High School was renowned for its whole-person education
and its emphasis on encouraging students to develop a wide variety of interest as well
as nurturing their psychological quality. How did your secondary education benefit your
development as a whole?

Fang: When I entered senior high, I read many books on self-development to boost my
psychological quality and I set a number of targets for myself. For example, to increase
my perseverance level, I planned a series of target studies for every weekend, a practice
that I maintained even when I entered university. Another example is that our school then
had a scheme to encourage students to exercise. Those who succeeded in running a certain
number of kilometers would be awarded a souvenir. I challenged myself to run every day,
even in the severe cold winter climate. All these self-training exercises helped equip me
with the determination to overcome future problems, both academic and otherwise; they
also gave me the will to succeed. I never give up easily, regardless of the scale of any
problem. In addition, our teachers also wanted us to help the poor people.

In the 1950s, I was deeply distressed to see so many people, particularly women, living
a hard life because of their low education. In those days, most women were still illiterate.
They could not read, write, or take a job. All they could do was to bear children for
their husbands and depend on the male members of their families for their whole lives,
financially, socially, and emotionally. Many did not even have a name and were only
identified by the surnames of their own clan and their husbands’. Hoping to help them
make a change, I decided despite my young age to take part in the voluntary service of
combating illiteracy among poor people in the rural areas. Being able to write their own
names was already something made them proud of and in themselves.

Seeing that people were battered hard by the tough lives, our school was calling for
efforts to raise the spirit of the community. I took the initiative to organize the street
carnival during the Spring Festivals. I mobilized students and also other supporters in the
community to decorate the places, put up stalls, and stage street shows to lighten up the
community as well as to broaden the minds and experience of the young.

3 University Studies, Peking University and Academia Sini-
ca: 1957–67

Loie: Can you tell me something about your university studies?
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Fang: Professors at Peking University had high expectations about their students. Peking
University, famous as it was, wanted to do just as well as Moscow University, which then
ranked first in a number of areas. Their education strategy was to let the best professors
teach first-year students so that the latter would have a solid foundation for their studies.
This, I think, was a wise strategy because despite my 10-year stoppage in my studies due
to the Cultural Revolution, I still had a firm grasp of mathematical techniques. Because of
the keen competition between Peking and Moscow Universities and also among students,
all of us were under tremendous pressure. Many of my classmates were filled with a sense
of negativism even though they performed exceptionally well in their secondary school
days.

Loie: How did you surpass all the difficulties and keen competition you faced in learning
advanced mathematics?

Fang: While at Peking University, I came across a book How to Solve It: A New Aspect
of Mathematical Method, authored by George Pólya (1957), who was then a professor
at the Swiss Federal Institute (where Albert Einstein graduated), and later at Stanford
University. This book embodies a wealth of wisdom on thinking skills. In a nutshell, the
book establishes a close-knit link between the specific and general, and advises readers to
be general in order to be specific and vice-versa. It also warns readers that it is better
not to have a book at all than to believe all that is written in the book. Professor Pólya’s
book also challenges readers to do something positive to exceed the teachings of books
they read. I was deeply moved by Pólya’s teachings and I put them into practice. I set
high expectations of myself and required myself to look for solutions rather than seeking
help from my teachers and classmates. Pólya’s book has had a life-long impact on me
and I have applied his teachings to my academic studies and research ever since. It never
occurred to me that I would have a chance to thank Professor Pólya in person. That
chance came when I visited Stanford University in 1982. Professor Kai Lai Chung took
me to see him and I told him that to me, he was first and foremost a great educationalist
and I trusted that his readers would agree with what I said.

Photograph 4: Kai-Tai Fang during his university days.
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Loie: I understand that you were a student of the renowned Pao-Lu Hsu1 and became
greatly influenced by his supervision.

Fang: Yes, the next person that impacted me was my supervisor, Professor Pao-Lu Hsu,
a UK-educated scholar who laid a solid foundation for multivariate statistical analysis and
who had four papers acknowledging his contributions published in the same issue of the
prestigious international journal The Annals of Statistics in 1980. This was an exceptional
treatment by the journal in recognition of his outstanding contributions. Hsu was severely
ill in 1962 and was instructed to take full rest by his doctor. Despite his illness, he continued
to work full time and take up both research and supervision duties. He required us to study
a 50-page book written by a Russian mathematician, a Stalin Award winner, and asked us
to try to improve his results and make a report in class. After our presentation, Hsu told
students that if they followed the Russian approach, they could only come up with a single
dimension. He then showed us how to solve the problem using different approaches and
came up with a more powerful answer that catered not only to one-dimensional statistics
but also to high-dimensional statistics. This was an eye-opening experience for me.

Hsu’s insistence in fulfilling his teaching obligations, despite his weak physical condi-
tion, and his dedication to research exerted great influence on my future academic career.
In fact, my first paper “The Limiting distribution of linear permutation statistics and its
applications” was completed under his supervision. Hsu said to me that there was a gap
in a paper originally published in The Annals of Statistics and should I be able to identify
and fill in that gap, I would be qualified to graduate. Very soon, I was able to identify the
gap and fill it in and even discovered that the paper could well be extended. I put in many
new angles which produced some interesting results. After two weeks, I handed in my
paper and, after reading it, Hsu told me that I could now graduate. He even recommended
that Acta Peking University should publish my paper, which it willingly accepted. It was
however most unfortunate that before my paper was published, a political movement took
place and all publications and newsletters came to a halt. Fortunately, the paper was
published 19 years later in Acta Mathematicae Applicatae Sinica, see Fang (1981).

Loie: That was an indelibly dark era for mainland residents. How did you survive this
period?

Fang: China then was really shrouded in an intense political climate and people became
distant from one another, fearing that any outpouring of genuine feelings would be be-
trayed, especially if they were about government and policies. Because of this, my years
at the university were unhappy—a sharp contrast from my high school days. My dislike
for the chaotic political movement in Peking University prompted my decision to pursue
further studies at the Institute of Mathematics, Academia Sinica (later changed to Chinese
Academy of Sciences) and became the first postgraduate student of Professor Minyi Yue.

Loie: What did you do in Academia Sinica?

Fang: My first two years at the Institute of Mathematics were fruitful under a favorable
academic ambience. In 1965 I was assigned to An Shan Steel and Iron Co and was forced
to turn to application instead of just theory. The engineers there treated us nicely and

1Pao-Lu Hsu (1910–1970) graduated from Tsinghua University in 1933, majoring in mathematics and then
worked at Peking University as a teacher. In 1936–1940 he studied mathematical statistics at University College
London, earning his Ph.D. in 1938 and Sc.D. in 1940, with Jerzy Neyman and Egon S. Pearson as advisors.
In 1945, he went to the United States, visiting the University of California at Berkeley, Columbia University,
and the University of North Carolina at Chapel Hill. In 1947, he returned back to Peking University. Further
reference: Chen & Olkin (2012).
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Photograph 5: George Pólya sent this photo to Kai-Tai Fang by person in 1982.

Photograph 6: Kai-Tai Fang and Kai Lai Chung (those in the middle), in Stanford University, 1981.
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Photograph 7: Pao-Lu Hsu (front row, 2nd from left) with Kai-Tai Fang (back, 2nd from left) and his
other graduate students at the Peking University, 1963.

Photograph 8: Celebration of Minyi Yue’s 90th birthday and Yuan Wang’s 80th birthday in 2010.
Professor Wang (4th from left) and Professor Yue (5th from left) are in the middle.
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had a high expectation of us. At that time, I used non-linear regression analysis to analyse
the data collected. This period signaled a positive change for me in that I could apply my
knowledge to meet the high expectations people bestowed on us. What I learned in Peking
University focused merely on theory and did not touch on any applications, which was the
weakness of the Russian education system. While I was at An Shan, I was asked to give
lectures to the engineers. I covered eight topics in statistics, all of which were published
for staff reference, an indication of the high regard in which they held me. My first two
years at the Institute were fruitful under a favorable academic ambience. However, this
favorable situation did not last long as the political movement took shape the following
year.

Loie: That was a prelude to a political storm, with the Cultural Revolution just round the
corner?

Fang: Indeed. The subsequent years were a complete waste of time. All of us were
deprived of the right and opportunity to pursue our studies and research. In 1965 and
1966, I was sent to the villages as a laborer. The following two years came the Cultural
Revolution and the political movement lasted until 1976. We were all under tremendous
pressure and stress and were uncertain about tomorrow. What was important then was
that we could survive today and we did not even dare to think about tomorrow.

As much as I hated this period, it did strengthen the psychological side of me, enabling
me to face each and every bitter challenge with an unyielding manner. Like Professor Grace
Yang of the University of Maryland once said me: “You have recovered your 10 lost years.”
She gave me a lot of encouragement on a number of issues.

4 Orthogonal Design, Uniform Design
Loie: When did you learn the orthogonal design and start conducting experiments with
this method?

Fang: During the early 1970s, staff from Peking University and the Institute of Mathemat-
ics, Academia Sinica, attempted to promote and apply orthogonal design to the industrial
sector. In 1972, I had the opportunity to go to the Tsingtao Beer Factory and other facto-
ries. I supervised the engineers there to apply orthogonal design to industrial experiments.
It was a precious experience for me to witness the substantial potential of applying orthog-
onal design to practical industrial use. However, I also detected the considerable difficulties
faced by the engineers in understanding statistical methods, especially in calculating the
ANOVA Table without the help of computers or calculators. I came to realize the need
for statisticians to simplify the complicated statistical theories and methods, and later
created “Visualization Analysis” for analytical use on experiment data. Very soon this
method was commonly used on the mainland, triggering a great sense of encouragement
and inspiration on my part.

Loie: There were quite a number of contributions that you made to the orthogonal design.
What were they?

Fang: During my process of promoting the common use of orthogonal design, I encoun-
tered quite a number of complicated multi-factor and non-linear issues. The engineers were
unable to identify a satisfactory parameter value combination for a long time. An example
was a porcelain insulator factory in Nanjing.

The factory had a team of staff assigned to conduct experiments continually to identify
a satisfactory parameter value combination. Although they had achieved much in their
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Photograph 9: Kai-Tai Fang (front, 2nd from right), other postgraduate students and new staff of
Academia Sinica were sent to work in rural villages during the Cultural Revolution.

Photograph 10: Kai-Tai Fang, S. R. Wang, Grace Yang and Lucien LeCam with his wife, in the Summer
Palace, Beijing, 1987.

experiments, they still failed to get one of the responses to meet the requirement, thus
failing to deliver the glass insulator products. (At that time, the factory received a large
number of orders for glass insulators but was unable to deliver the products.) In view of
the complexity of the issue, I adhered to the principle of “big net catching big fish”. I
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conducted 25 experiments and arranged six 5-level factors by an orthogonal design.

From a statistical point of view, the experiment model was non-estimable and was
therefore incorrect. However, in those 25 experiments, one had all the responses fulfilling
the requirements. That was great news to the factory in-charge. Should one liken the
outcome to winning the US lottery or was it significant? In fact, using orthogonal design to
conduct 25 experiments actually represented 15,625 experiments, thus greatly increasing
the likelihood of attaining an ideal technical/manufacturing condition. In my opinion,
the power of fractional factorial design was that the experimental points have a good
representation. Since then, I have used the same strategy to solve many of the “lasting,
major and difficult” problems of the factories. This success has also injected in me the
necessary courage to initiate the Uniform Design theory and method.

Loie: Can you tell me how you came up with uniform design, an approach so well known
in the statistical field?

Fang: Using the “big net” approach to get the best level-combination of the factors, I
mustered the courage to create another new method—the uniform design approach. In
1970, I came across several occasions which called for the application of a more powerful
statistical approach. For example, in 1975, a factory manufacturing steel for automobiles
wanted to come up with a nationwide standard that needed the numerical calculation of
many five-dimension integrals. At a time when computers were much less powerful, it was
almost impossible to do so. Luogeng Hua and Yuan Wang came up with a method to solve
high dimension integral problems. Professor Wang taught me how to use their method
and I realized five years later that the method might be applicable to experimental design.

In 1978, there were three major missile-related projects covering land, sea and aerospace.
A problem-solving approach was needed to tackle all the projects. Again, it was highly
challenging. I had to come up with a new method, one that could approximate a com-
plicated system by a simple method with required accuracy. The great challenge was a
motivating force to me.

I collaborated with Yuan Wang and we worked out the uniform design. This method
made possible the calculation of an accurate answer in .00001 seconds with the required
accuracy. It was both time- and cost-saving and provided a valuable alternative since it
could also be used in computer experiments as well as laboratory experiments. Several
years after the uniform design theory was proposed, I discovered that it was being used
extensively in the mainland. Not only was it used for military purposes, it was also adopted
by and for civilians.

Loie: There was some opposition to the uniform design in the mainland, why?

Fang: In the cases mentioned above, we promoted the use of uniform design in computer
experiments which was a completely new concept to many at that time. While most
traditional experimental designs used ANOVA as the main tool for data analysis, we
proposed the use of regression analysis for modelling. During the 1970s, especially just
after the Cultural Revolution, many scholars in China were still adhering to the modeling
of the traditional experimental designs. But our uniform design approach, although not
quite supported by the academics, was greatly welcomed by the engineers.

5 Overseas: 1980–82
Loie: The 1980s marked a significant chapter in your life as you started to play a key role
in the global scene. Would you consider that as an epoch-making era for you?
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Photograph 11: Yuan Wang and Kai-Tai Fang. This photo was taken by CCTV in 1994.

Fang: In a way, yes. In 1980 when I had the opportunity for an overseas visit, I did not
plan to go initially in view of my wife’s illness. Tingmui suffered from asthma and, of
course, my two daughters were quite young. My standard of English then was low and
basically I could not communicate in the language. Besides, we were blocked from the
outside world during the 10 years of political movement and we were ignorant of what was
happening around the world.

After much deliberation, I finally visited Yale University with one focus in mind—to
learn as much as I could within a limited period of time. The eight months I spent at
Yale was, on one hand, tremendously difficult as I was learning from scratch and yet,
on the other hand, it was fulfilling as I succeeded in coming up with several papers, one
of which was published in Encyclopedia of Statistical Sciences. While at Yale, Professor
Samuel Kotz sent me one of his books which inspired me to come up with a paper—
my first paper, Fang (1982), to be published in a Western journal (Journal of Applied
Probability)—and therefore a series of collaborations started between us.

Then in 1981 and 1982, I went to Stanford University for a visit and there I met Pro-
fessor T. W. Anderson, a Princeton graduate who later taught at Columbia and Stanford
Universities. He asked me to read two papers and then we had some idea about general-
ized multivariate analysis. Many statisticians wanted to generalize multivariate analysis
to non-normal populations, but they failed. The combination of the essence of Pólya’s
and Hsu’s teaching—that you need to seek different approaches and you need a powerful
tool in order to exceed the work of others—prompted me to undertake a search for such a
powerful tool: the d operator. I systematically developed this tool and wrote two papers
on the topic. After publication, Professor Anderson identified a vast potential for further
development and subsequently selected a topic for extended research. He engaged more
of his students in this research and on my return to the mainland, I also brought many
students into the activity. This collaborative research of ours continued for eight years,
during which more than 50 articles, two monographs and a collection of papers were pub-
lished. This was a big leap forward compared to the situation prior to my overseas visit
when it was a norm for one project to generate only one or two papers. I realized that for
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Photograph 12: Visiting Samuel Kotz and his wife, 1988.

Photograph 13: T. W. Anderson and Kai Tai Fang in Hong Kong, 1997.
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people of high standards, the choice of topics was of paramount importance.

During my visit to Stanford University, Professor Ingram Olkin organized a small sem-
inar group on “multivariate multiple comparisons” which met every week. The participants
included T. W. Anderson, Mary Ellen Bock, Zhongguo Cheng and me.

Our collaboration brought me high international reputation. I was invited by Ency-
clopedia and other journals to act as referee, author or Associate Editor. I was deeply
appreciative of Professor Anderson for his identification of the potential and productivity
of the generalized multivariate analysis as a research topic.

Loie: Did you have the chance to visit other universities?

Fang: Yes, in October 1982, I was invited to give talks at several universities, including
Princeton, Yale and Columbia, and the universities of Pennsylvania, Maryland, Rutgers
and George Washington. These visits were useful to my work, especially after I was
promoted to Associate Director of the Institute of Applied Mathematics, Academia Sinica.
Then in 1985–86, upon Professor Ingram Olkin’s recommendation, I taught two subjects
in the Swiss Federal Institute as a Guest Professor. It posed another challenge for me as it
was the first time I had to teach in English. During my stay there, I seized the opportunity
to visit various prestigious institutions including Oxford, Cambridge, University College
London and Imperial College London, etc. The visits helped me to network which has
proved useful throughout my career. In fact, it was during these overseas trips that I met
Professors Colin White, C. Radhakrishna Rao, Norman Lloyd Johnson, D. R. Cox, A. P.

Photograph 14: Ingram Olkin and Kai-Tai Fang in Beijing, 1984.
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Dawid, Yung Liang Tong, Y. S. Chow, George Tiao, Michael Stephens, Dennis K. J. Lin,
and Agus Sudjianto. I am glad that our paths crossed as they were all inspirational to me
in one way or another.

Loie: I heard that you had a particular connection with the University of North Carolina
(UNC) at Chapel Hill. How is that so?

Fang: Well, in 1988 I first went to the University of North Carolina at Chapel Hill—where
my former supervisor Pao-Lu Hsu once taught as a visiting professor between 1945 and
1947—and taught generalized multivariate analysis. In that year, Professor Norman Lloyd
Johnson was in his last semester before his retirement, and he left me his teaching notes on
multivariate statistical analysis. It is a unique gift to me. Since then, I have been linked to
the UNC in different ways. In addition to Pao-Lu Hsu, my former student Jianqing Fan, a
recipient of the COPSS Award and now professor at Princeton, was also a faculty member
of the UNC. Later, my daughter Yan Fang completed her Master’s degree in biostatistics
at UNC and my son-in-law, Runze Li obtained his doctoral degree in statistics at the same
university. Runze was my former student in Beijing. Both of Jianqing and Runze have
been Editors-in-Chiefs of The Annals of Statistics.

Photograph 15: Runze Li and Yan Fang, graduate ceremony in University of North Carolina (UNC) at
Chapel Hill, 2000.
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Photograph 16: Kai-Tai Fang, Norman Lloyd Johnson and Gordon Simons in UNC, 1988.

6 Back to China: 1982
Loie: What happened when you returned to the Academia Sinica in 1982?

Fang: I returned to Beijing in October 1982 after 2 years visiting in USA (Yale and Stan-
ford Universities). In the spring of 1984, I was appointed the Deputy Director of Institute
of Applied Mathematics, Academia Sinica. In 1985 I was approved to become Doctoral
Supervisor in Applied Mathematics including Statistics by the National Committee. There
were few professors who could be doctoral supervisors in China then. There were about 6
doctoral supervisors in statistics around the country in 1985. Many young scholars wanted
to be my postgraduate students or to attend our seminars. Most of those young scholars
eventually went overseas after my supervision. Jianqing Fan (to Princeton), Gang Li (to
UCLA), and Jianxin Pan (to the University of Manchester) were among this group.

Loie: What were your main contributions to the development of statistics in China in the
1980s?

Fang: During that period of time, I was devoted to the promotion of research on and
the use of multivariate statistical analysis. I organized several national conferences on the
topic. After a lot of hard work with Professor George Tiao and others, I proposed and
managed to have the first Sino-American statistical meeting held in Beijing in 1987. This
was the first time that so many statisticians from USA came to visit China.

Loie: As the Deputy Director of the Institute of Applied Mathematics, Academic Sinica,
what were your special contributions to the Institute?

Fang: I was very active in encouraging research staff to expand their research porfolio by
seeking external projects. I suggested, and was accepted by the Director of the Institute
to change the research funding system from center-based to project-based. That succeed-
ed in raising the initiatives of the staff, as well as the income of the Institute and the
researchers. In addition, I established the first technical report series in the Institute of
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Applied Mathematics. To help save printing cost and enhance presentation of the reports,
I bought an HP laser printer which was not available in China then, and carried it all the
way from California to Beijing for the Institute. I even undertook to train the Institute
staff on how to use LATEX.

Loie: Did you still have time for your own research?

Fang: Meanwhile, I was also productive in my own work. I produced two monographs,
Symmetric Multivariate and Related Distributions (Fang, Kotz & Ng, 1990) and Gener-
alized Multivariate Analysis (Fang & Zhang, 1990), and two reference books, Statistical
Distributions (Fang & Xu, 1987) and Applied Regression Analysis (Fang, Quan & Chen,
1988).

7 Hong Kong Baptist University: 1990–2005
Loie: When did you move to Hong Kong and why?

Fang: I always have had more interest in research than administration. When I knew
that the Academia Sinica had a plan to promote me from the Deputy Director to Director
of the Institute of Applied Mathematics, I decided to take leave from the mainland for a
few years. I joined the Hong Kong Baptist College which happened to be in the process of
planning to become a university. She needed scholars who excelled in research. Due to the
need of the College and its continuing development after successful upgrading, I decided
to stay there permanently.

Loie: How would you describe your academic and research pursuits at the Hong Kong
Baptist University (HKBU)?

Fang: With the encouragement of Kai-Wang Ng, I moved to the Hong Kong Baptist
University (then College) in 1990. My years at the HKBU were the happiest and smoothest
of my academic life. Many of my important papers were all published during this period in
international journals, gaining me global exposure and reputation. The academic ambience
here was stimulating and the congeniality among colleagues was notable. The support I
gained from the top administrators was keen, facilitating my collaboration with overseas
and mainland academics. The number of PhD and MPhil students supervised by me was
comparatively large. All these factors created an environment conducive to both academic
and research developments. I must thank our former Presidents Dr. Daniel C. W. Tse
and Professor C. F. Ng, as well as Academic Vice-President Professor Herbert H. Tsang
for their encouragement and support. It was at the HKBU that I reaped the most fruitful
harvest in terms of academic and research pursuits. It was also here that I received various
honors and awards.

Loie: You have developed or further developed quite a number of methods during your
academic career at the HKBU. Can you tell me more about them?

Fang: The Quasi-Monte Carlo method was one that was expanded and further developed
here in Hong Kong. We started applying the method in Beijing to develop the uniform de-
sign. In Hong Kong we continued to apply the Quasi-Monte Carlo method to experimental
design, and also to a variety of statistical problems, including simulation and statistical
inference. In 1994, I co-authored a book, Number-Theoretic Methods in Statistics, with
Yuan Wang to further promote the method and its applications; see Fang & Wang (1994).
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Photograph 17: Samuel Kotz (left 5) and Yung Liang Tong (left 6) visited the Institute of Applied
Mathematics, Beijing, 1987.

Photograph 18: Kai-Tai Fang (fifth from left) with C. F. Ng (centre), then Dean of Science and now
President and Vice-Chancellor, and departmental colleagues at the Hong Kong Baptist University, 1993.

It was also in the same year that I became President of the newly-established Uniform
Design Association of China, a post which I held for 10 years until 2003.
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There was a hiccup in the development of uniform design as the uniformity was cat-
egorized as a geometric criterion instead of a statistical one. This criticism provided an
excuse for people to reject our papers. In view of this, I decided to spend more time on
the uniform design theory. In 1992, a participant from North Carolina State University
attended my conference in Hong Kong and told me that it was a pity that the Western
community did not know about the uniform design. This remark was of great encourage-
ment to me and inspired me to work on more solid basic theory for the uniform design
method.

Loie: How did you overcome the technical difficulties of promoting the uniform design
theory and method?

Fang: I indeed encountered a number of problems in tackling the issue. First, I was
not familiar with the typical tools employed by the Quasi-Monte Carlo method as they
were invented by mathematicians such as Luogeng Hua and Yuan Wang. Besides, I am a
statistician and not a pure mathematician. One way to solve the problem was for me to
learn to use the tools but it would not be effective in light of my age and time.

Second, the uniform design theory in itself was difficult. I therefore spent the first four
years, i.e., from 1992–96, working on it. It was like an exploration for me and I made slow
progress. It was necessary for me to identify the tools that suited me—on which I spent
an enormous amount of time. As the Chinese saying goes: “It is of little use for peonies to
blossom only by themselves. They need green leaves to bloom with them.” I was stimulated
to focus more of my time on the uniform design. In fact, 90 per cent of my academic
pursuits has focused on uniform design since then. My collaboration with several scholars
led to the discovery of a breakthrough that suited me. I came up with the conjecture that
most orthogonal designs were uniform in a certain sense. If that was the case, we could
link up orthogonal design with uniform design and obtain a vast development potential for
uniform design.

I spent one year with Peter Winker of Germany, a doctoral student then and a professor
now, to prove with the computer that my conjecture was true. It was exciting to find
that my conjecture was true in that many existing orthogonal designs were also uniform
designs. Our result was based on the measure of uniformity proposed by my colleague,
Fred J. Hickernell. This discovery was of mutual benefit to both Fred and myself. For him,
his proposed measure of uniformity was initially not appreciated by many but his measure
became necessary in uniform design. For me, his measure of uniformity helped prove that
many existing orthogonal designs were uniform designs. With this, we still had one step
to complete—to come up with a mathematical proof.

To achieve this, I invited Rahul Mukerjee, Professor of the Indian Institute of Man-
agement in Calcutta, to collaborate with me. Rahul is a worldwide expert in experimental
design. After two weeks, he told me that my conjecture was not always true, even for a
two-level factorial case. However, he came up with an excellent result—that we could link
up uniformity with orthogonality. A criterion “aberration” was used to measure orthogonal
design. For uniform design, the centered discrepancy was used to assess uniform design.
With this, Rahul and I established an analytic relationship between centered discrepancy
and aberration. This discovery was immediately published in a top journal, Biometrika,
see Fang & Mukerjee (1999). It opened up an entirely new area that linked up uniform
design and factorial design, an area in which I collaborated with Chang-Xing Ma and
others, and which resulted in the publication of more than 20 papers since 1999–2000.

Then in 2000, I began collaboration with S. G. Ge from Suzhou University and Min-
Qian Liu from Nankai University to link up combinatorial design and uniform design.
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Photograph 19: Peter Winker and Kai-Tai Fang in Germany, 2004.

Photograph 20: Jianxing Yin, Min-Qian Liu, Rahul Mukerjee, Kai-Tai Fang, Hong Ma and Yizhen Liang,
2001.
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Photograph 21: Chang-Xing Ma, Kai-Tai Fang and Dennis K. J. Lin, 2010.

Photograph 22: Kai-Tai Fang and Fred J. Hickernell, 2004.

Another new direction was established and this also led to the publication of many research
papers.

The breakthrough we achieved in relation to uniform design won international recog-
nition. The Encyclopedia of Statistics Science (Second Edition) has chosen uniform design
as an entry, see Fang (2006), while the Handbook of Statistics (Volume 22) already includ-
ed uniform design as a chapter; Fang & Lin (2003). Springer’s Handbook of Engineering
Statistics invited us to write a chapter on uniform design for engineers and this too will

A Conversation with Kai-Tai Fang

23



soon be published; Fang & Chan (2006).

Uniform design also won national acclaim. The Uniform Design Association of China,
for example, reflected the need to conduct national conferences, training courses, workshops
and other activities to meet the calls to promote the applications of uniform design.

Loie: Are there applications of uniform design in real case studies?

Fang: Application-wise, there were numerous successful applications of uniform design in
China. With the keyword “uniform design”, you can call up (on the Internet) hundreds of
published case studies. The application of uniform design by Ford Motor Co in the USA
is exemplary of the applicability of this method. At Ford, Dr. Agus Sudjianto introduced
to us that the technique had become a critical enabler for them to execute “Design for Six
Sigma” to support new product development, in particular, automotive engine design. I
was told that today, computer experiments using uniform design have become standard
practices at Ford Motor Company to support early stage of product design before hard-
ware is available. As a result, Runze Li, Agus Sudjianto and myself decided to publish a
textbook/monograph Design and Modeling for Computer Experiments, Fang, Li & Runze
(2005), where many case studies were from the real cases in Ford Motor Co. In 2001 the
50th Gordon Research Conference: the Statistics in Chemistry & Chemical Engineering
invited the topic “Uniform design for simulation experiments”as one of the nine topics,
and each topic was given 3.5 hours for introduction and discussion. Professors Dennis K. J.
Lin, Yizhen Liang (a chemist) and myself formed a panel for this topic.

Loie: Apart from research, you also spent much time on statistical education. Can you
elaborate on that?

Fang: To promote statistical education, I wrote international monographs, textbooks for
undergraduate and postgraduate studies as well as textbooks for engineers in the mainland
and for various targets on different occasions. I was also willing to take up guest professor-
ships. Often, many of the participants who are now professors and industry and university
leaders came to me and said they had listened to my lectures on various occasions or
studied my textbooks when they were students. I found that quite rewarding.

I have been told that one of my textbooks, An Introduction to Multivariate Anal-
ysis, Zhang & Fang (1982), has been assigned as a compulsory textbook for Analytical
Chemistry students. That was beyond my expectations. Although promoting statistical
education has increased both my exposure and reputation as a by-product, what I found
most gratifying and encouraging was the fact that I can make some contributions to my
country.

I also understand that some of my textbooks and articles have been published in lay-
man’s terms for different professions so that the non-statistical sectors could also conduct
research with statistics including uniform design. For example, the application of multi-
variate statistics to devise a common dress standard in 1976–78 was successful and the
National Standards Bureau invited me to write a series of lectures. The published articles
were collected as a book entitled Statistics and Standardization. Another example was the
An Shan Steel and Iron Co which I mentioned earlier.

Loie: I know that you have organized or co-organized quite a number of significant con-
ferences, both international and national. Organizing conferences of this scale requires an
enormous amount of time and attention. How did you find time to organize these activities
amid your already hectic schedule?
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Fang: On a national basis, China had fallen behind for at least two decades because of
the political turbulence. It was necessary to bring it to par with our counterparts over-
seas. Collaboration was useful in this regard. I took part in organizing seven nationwide
multivariate analysis conferences since 1979, with one part of it theoretical and the other
on applications, to provide a platform for establishing collaboration between the two. To
attract international collaboration, I organized the Sino-American Statistical Meeting in
1987, which attracted more than 200 participants. In Hong Kong, I organized

• the International Symposium on Multivariate Analysis and Their Applications in
1992,

• the International Workshop on Quasi-Monte Carlo Methods and Their Applications
in 1995,

• the International Symposium on Contemporary Multivariate Analysis and Its Appli-
cations in 1997,

• the Symposium on Theory of Uniform Design and Its Applications in 1999,
• the 4th Monte Carlo and Quasi-Monte Carlo Conference in Scientific Computing in

2000 and
• the Symposium on the Uniform Experimental Design in 2003.

Loie: You have been accorded high international reputation as a result of your contributions
to the global statistical field. The honors and awards bestowed on you include Fellow of
Institute of Mathematical Statistics (1993), Fellow of American Statistical Association
(2001) and numerous awards for your outstanding contributions to multivariate analysis,
quasi Monte Carlo methods, design of experiments, and for your leadership in statistical
education, consultation and administration as well as for your editorial service. Despite
all these prestigious honors, you are still a modest man of high integrity, as reflected in the
tributes dedicated to you by your peers. How did you manage to always conduct yourself
in such a good manner and with such a positive attitude? Was there any advice you took
to heart and which helped shape you the way you are today?

Fang: My parents set a good example for me. To this day, I still remember vividly the
advice my father gave me. He said if you extend your help to others, you should forget
about it. On the contrary, if you receive assistance from other people, you should always
keep that in mind and return the favor. Before I reached 40, the country had become poor.
My wife Tingmui was weak and my daughters were still young. Our standard of living
was basically minimal. Some of my friends helped me, but I was incapable of paying them
back. When my economic situation improved, I paid back all the debts and whenever we
came across a friend who needed financial assistance, we never hesitated to lend a helping
hand.

My mother was exemplary of how one should conduct one’s self, even in an adverse
environment. She came from a village background and had no educational opportunity
or cultural heritage. It was not until after her marriage that she had the chance to learn
how to read and write. My father, on the other hand, came from the upper class. My
mother kept a low profile but she learned exceptionally fast. And she always presented
herself well, regardless of the situation. I learned from my mother that if you want to
adapt yourself to a new environment you have to learn to be aware of your surroundings
and should not be self-centered. I adhered strictly to this philosophy when I first visited
the United States, a country so vastly different from my own in almost every aspect—
in cultural, logic, systems, terms, etc. I thought of my mother and I began to watch
attentively other people’s behaviour, their culture, their logic, their way of thinking, their

A Conversation with Kai-Tai Fang

25



Photograph 23: A. P. Dawid, Fred J. Hickernell, Kai-Tai Fang and T. W. Anderson at a conference in
Hong Kong, 1997. Sitting behind Kai-Tai is C. Radhakrishna Rao.

Photograph 24: Kai-Tai Fang poses with his former students; from left: J. J. Liang, Jianxin Pan, Jianqing
Fan, Kai-Tai, H. B. Fang and M. Y. Xie, during a conference break, Hong Kong, 1997.
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strengths and their weaknesses. I became happy when I began to appreciate differences
in my environment. I learned the things that were desirable and brought them back to
the mainland. My positive attitude allowed me to keep an open mind in my management
style and, because of this, I was promoted to Deputy Director of the Institute of Applied
Mathematics, Academia Sinica, in a mere one-and-a-half years after my return to the
mainland.

Another person who influenced my personal development was Professor Kai Lai Chung2,
the first Ph.D. student of Pao-Lu Hsu. While I was in the USA, he told me that many
people hid themselves in the office or laboratories to do research and declined to mix with
Americans. He asked me why I went to the States and advised me to go out and mix with
the people. Following his advice, I joined an activity every two-and-a-half days, be it a
seminar or party or social gathering. I benefited greatly by joining these activities and I
became aware of a significant improvement in my English communication skills and in my
understanding of the Western culture.

I am a firm believer that great achievements involve great risks. I encountered a
dilemma in 1980 when I was offered an opportunity to go abroad as a visiting scholar.
My wife then was sick and my two kids still small. This, coupled with my unfavorable
financial situation, somehow deterred me from making a positive move. One of my friends
said to me that if I did not go abroad, my career development would be limited. He said
every person must face at least one difficult period in his lifespan and that one must face it
with bravery and courage in order to overcome it. This remark was inspirational to me. I
therefore took the risk of traveling abroad and was psychologically prepared to come back
anytime should I receive a telegram with bad news. My wife, who was told by some of the
neighbours that she might not be able to see me again should I go abroad, supported my
move. I deeply appreciate her much-needed understanding and unfailing support.

Loie: Do you have any motto and if yes, could you share it with the younger generation?

Fang: I don’t have one in particular but I think that to me, the most important thing is
to be a person of integrity. Good character precedes good academic achievements. Also,
don’t be afraid of difficulties. Face the problems head-on and find a way to solve them.
Remember that there is always a way out for those who look for one. I went through the
10-year Cultural Revolution without even knowing whether there would be a tomorrow
and I survived. It is important to build a strong psychological shield to shelter yourself
from external attack. I also encourage youngsters to work hard. If you decide to go for
something, do it with all your might and give the best you can.

2Kai Lai Chung (1917–2009) graduated from the Department of Mathematics of Tsinghua University, Bei-
jing. In December 1945 he went to Princeton University and obtained his PhD in 1947, with Harald Cramér
and John W. Tukey as his advisors. In 1950s, Chung taught at the University of Chicago, Columbia University,
Berkeley, Cornell University and Syracuse University. In 1961 he transferred to Stanford University, providing
fundamental contributions to modern probability theory.
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Photograph 25: Kai-Tai Fang with his parents, sisters and brother.

Photograph 26: A family picture taken at the Summer Palace in Beijing, 1981.

Agnes W. L. Loie, Lucinda Li, Simo Puntanen, George P. H. Styan

28



Photograph 27: Kai-Tai and wife Tingmui in 1985.

Photograph 28: Kai-Tai Fang’s family with C. Radhakrishna Rao’s family, 2003.
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Photograph 29: A happy family reunion in Stanford University, 2010.

8 HBNU-HKBU United International College,
Zhuhai Campus: 2006 onwards

Li, Puntanen & Styan = LPS.

LPS: When did you retire from the HKBU?

Fang: The usual retirement age for the public sector in the last century of Hong Kong
was 60. Thus I should have retired in the year 2000. But due to the development need of
the HKBU, the senior management of the University made a special exception in my case
to retire in January 2006.

LPS: You were working in Hong Kong since you emigrated there in 1990, how come you
are teaching in a college back in China?

Fang: Everyone nearing retirement has to make a decision as to what to do, where to
stay, and how to contribute to the host society after retirement. Several universities of the
US and New Zealand invited me to teach there. At the same time, the newly appointed
President of HKBU, Professor C. F. Ng had a plan of building a liberal arts college in the
Pearl River Delta in Southern China. The new College would be modeled on the public
universities of Hong Kong for its structure and management, with English as its teaching
medium, whole-person education in orientation, knowledge for application, and be more
internationalization. I liked this challenge and thus accepted the invitation of Professor
Ng to become a member of the planning team for this innovative institution.
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LPS: When did your involvement with the UIC begin?

Fang: In the winter of year 2000, Professor C. F. Ng formed a delegation consisting of
the vice-presidents, deans, faculty members and administrators of the HKBU, to begin the
search for a site in China for the building of the UIC. The delegation visited many cities in
the Pearl River Delta and municipals in the mainland and met with their senior officials.
After much comparison and deliberation, all of us found Zhuhai to be the best location
due to its green and clean environment, its emphasis on education, and the enthusiastic
support of its government leaders. The delegation was given a very high profile reception
by the Municipal Government led by the Municipal Party Secretary Mr. Longyuan Huang
and City Vice-Mayor Mr. Ningke He at the time.

According to the Chinese law, a local partner had to be found for all local-foreign
joint enterprises. The new college, as such nature, needed to find a local collaborator. For
this mission, a committee was set up by the HKBU, headed by the then Vice-President
(Development), to begin the search. Finally, through the connection and recommendation
of Professor Jialu Xu, the then Deputy Chair of the Standing Committee of the National
People’s Council and a good friend of HKBU, the Beijing Normal University (BNU) was
chosen. The new college was named as “Beijing Normal University-Hong Kong Baptist
University United International College” (UIC for short), being the longest name of a
university/college in China.

LPS: Was the joint venture well received right from the start?

Fang: While still on the drawing board, the College was shrouded with intense scepticism.
Many people questioned its chance of success. The College, being new and financially self-
supporting, had many aspects worked against its smooth birth. The negative factors
included the low confidence of parents towards a new institution especially its being such
new model of education in China, the high tuition fees charged (compared to the local
universities), the limited academic profile with only three Science programmes (Computing
Science, Statistics, and Environmental Science) and two Business programmes (Finance,
and Applied Economics) on offer, and inability to lure the Associate Degree students from
Hong Kong. Nevertheless, the UIC was born, out of the hard labour and perseverance of
the founders/pioneers.

LPS: How difficult was it to recruit students?

Fang: In its first year, without the full support of the Guangdong Education Bureau,
less than 200 students were recruited, picked from those who were turned down by other
universities under the National College Entrance Examination (NCEE) system. After years
of hard work, the UIC now has 20 Major Programmes and more than 4900 undergraduate
students.

LPS: How difficult was it to recruit teaching staff at that time/ How about staff recruitment
at that time?

Fang: As a private college, tuition fee is the only source of income for the College. In the
early years, due to the low salary and short history, many newly graduated doctorates,
worrying about their future prospect, turned down the College offer for elsewhere. At this
difficult moment, I came up with an innovative solution: inviting Professor Yung Liang
Tong who had just retired from Georgia Institute of Technology, Atlanta, USA, to come
and teach for one semester, and Philip Cheng of the Statistical Institute of Taiwan for
another.
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LPS: What made the College a success?

Fang: The UIC built up its reputation by its teaching quality and excellence. The strong
commitment of its staff to provide the best for their students, and their seriousness in
teaching was greatly impressive to and appreciated by the students and parents. Repeat
students, programme transfer students, and students returning from sick leave were given
extra hours and special courses free by the teachers to help them catch up with their
studies. There was a Statistics student who was in a coma after a car accident. He could
not continue his study for almost a whole semester. Teachers not only donated to a fund to
help pay his medical bills and health recovery, but also redesigned his study plans so that
he could catch up with his academic study and graduate on time. The student of course
worked very hard so not to let down those who had supported him and he successfully
completed his final year project. Despite his poor family background, the student through
part-time work and scholarship supported himself to further study at the Georgetown
University in Washington, DC, USA, after graduated from the UIC. Another student,
internally transferred from the Teaching English as a Second Language Programme to
Statistics, was able to gain admission to the University of Oxford, UK, for postgraduate
there after years of patient teaching and guidance of the programme teachers.

Such caring attitude and devotion of staff to the well-being of students was a living
proof of the College’s educational philosophies of four point education (students-parents-
staff-community) and whole-person education which were clearly seen by many parents as
education of a very different kind.

On average, about 65% of our Statistics graduates went to further studies in overseas,
many to the USA, UK, Australia, Canada, and Hong Kong. The rest found work in
mainland China and Hong Kong.

LPS: How about the Chinese Government’s support to education? It seems to be very
good, maybe better than in many Western countries?

Fang: Support from the Chinese Government to public institutions has grown on a regular
basis. But as a private institution, no support comes to the UIC from either the Hong
Kong or Zhuhai Governments. Tuition fee is its only income. Even then, the tuition fees
cannot be raised without the permission of the Guangdong Price Bureau, the authority that
regulates the level of charges for all goods and services in the province. The development
path of the College has not been a smooth one. Recently, the Zhuhai Government has
offered the College a piece of land for its future development. This may be deemed as a
commendation for its contribution and achievement.

LPS: Ten years ago you had some plans in mind regarding how you see the years after
your “retirement”. We now see that you actually did not retire at all. So, can the same
question be asked again? And how did your plans work?

Fang: In the past ten years, most of my time was spent on the establishment of the new
Statistics Programme in the UIC. But my research on experimental design, data mining,
statistical simulation and magic squares has never stopped. From 2005 to now I published
one monograph Design and Modeling for Computer Experiments (2005), three textbooks
in Chinese, 48 research papers, and nine papers in mathematics/statistics and culture. I
have also done a lot of services in refereeing research papers, organizing sessions in some
international conferences, etc.

LPS: What is the role of Statistics in Chinese universities these days?
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Fang: In the recent 30 years, Statistics has grown enormously in status in China. The
discipline used to be subsumed under Mathematics which was a Class 1 discipline, whereas
Statistics was only a Class 2. Three years ago, the Chinese Ministry of Education decided
to turn Statistics into a Class 1 discipline. At present, most universities and colleges al-
ready have an independent Statistics department, offering Master and Ph.D. programmes.
Unfortunately, there is a lack of qualified teachers for it. In view of the teaching need, the
Higher Education Press of China invited me to be the Chief Editor, to assist them in the
publication of a series of statistics textbooks. Several books have been published including
three of my works with other professors. These are: Design and Modeling of Experiments
(2011) with Min-Qian Liu and Yong-Dao Zhou, Matrix Algebra in Statistics (2013) with
Min Chen, and Modern Basic Statistics (2015) with Xiaoling Peng.

LPS: What has been your main research interest during that 10 years?

Fang: Due to my duties as the department head of the new Statistics Programme, and
chairs/members of many committees, the time I could devote on research has been sub-
stantially less when I was at the HKBU. However, I kept myself closely informed of the
new development of experimental designs, especially uniform design. I continued to pro-
vide help to many users of the uniform design in different countries. In 2008, Professor
Yuan Wang and I were awarded the Chinese State Natural Science Award, the highest
recognition for the initial concept, theory and application of the uniform design

I have a definite concern over the “Big Data”. I disagree with some authors who
attempted to exclude Statistics out of the research and application of Big Data. No matter
what, the popularity and application of Big Data is a challenge for the statisticians who
can find ample space for development from there.

Recently, I have some interest in magic squares. The concept of magic squares was
originated from China. Over the years, mathematicians and its fans in China have made
huge contribution to the development of magic squares. I have great respect for George
P. H. Styan especially for his research and achievement in this area. The series of papers
by him and his collaborators were greatly inspiring for us.

LPS: Could you please tell some collaborators over the last ten years?

Fang: Due to the convenient location of the UIC (in the Pearl River Delta), I have had
many opportunities to visit the numerous universities in the region, such as Sun Yat-sen
University, Guangzhou University, South China Normal University, Shenzhen University,
Beijing Normal University at Zhuhai campus, etc. I was even able to make frequent visits
to the Chinese Academy of Sciences, where I studied and worked for about 27 years. I have
been working with Professors Yuan Wang, and Min Chen there on some joint projects.

The founding of the Statistics Programme at the UIC had taken up much of my time
and I was unable to take part in international conference as frequent as before. However,
I was invited to be a member of the Institute of Mathematical Statistics (IMS) Fellow
Committee for the selection of IMS fellows from 2007 to 2009. I have also attended two
International Workshops on Matrices and Statistics: one in Shanghai, China (2010) and
one in Toronto, Canada (2013). I am going to attend the one in Haikou City (Hainan,
China) in 2015. Those occasions enabled me to meet up with many old friends. Through
my personal contact with Tam Ming, UIC and Georgetown University, USA, have start-
ed a close cooperation for Master Programmes in biostatistics and other areas. Similar
cooperation will take place with the Victoria University of Wellington, New Zealand, and
Illinois Institute of Technology, Chicago, USA.
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Photograph 30: UIC teaching staff in statistics, 2010.

Photograph 31: Hans Joachim Werner, Jeffrey J. Hunter, Yonghui Liu, Kai-Tai Fang, Shenfang Zheng,
Simo Puntanen, Tingmui Li; IWMS-Shanghai, June 2010.

LPS: How big is the teaching staff in statistics in the UIC?

Fang: Currently we have four full professors, three associate professors, three assistant
professors and many instructors and teaching assistants.

LPS: Importance of your wife, Tingmui Li. As we all know, her role and support in your
career has been go utmost importance.
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Photograph 32: Kai-Tai Fang with his wife Tingmui, George P. H. Styan with his wife Evelyn; IWMS-
Toronto, August 2013.

Photograph 33: Kai-Tai with his wife Tingmui Li in Kunming (capital of Yunnan Province), 2014.
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Fang: Tingmui retired from the Peoples’ University of China (also known as Renmin
University of China) in 1999. We married in 1968 and during the first 31 years of our
marriage we lived apart for some 20 years. Soon after we got married and for seven years
(from 1968 to 1975), I worked in a military farm or in in Beijing while she worked as a
technician in a chemical factory in Shandong Province; from 1980 to 1986, she lived in
Beijing and I spent three years in the USA and six months in Switzerland; during the nine
years of the 90s (1990–1999), I was in Hong Kong and she was in Beijing. We finally got
back together when Tingmui moved to Hong Kong after her retirement in 1999. Next year
is our Golden Jubilee. Despite our long periods of separation, we managed to bring up two
wonderful daughters: Ying Fang and Yan Fang. They successfully completed a Master of
Business Administration and Master of Biostatistics, respectively. We have one grandson
and two granddaughters.

LPS: Hobbies these days?

Fang: When I was a secondary school student, I liked playing Chinese Chess, swimming,
reading all sorts of books; while at university, I liked long-distance running, watching
modern drama, reading novels; in Hong Kong, my favourite sports were table tennis,
swimming and hiking; nowadays, I can only take walks and watch TV.

LPS: What do you like to do when you are not doing statistics?

Fang: When I retire, I would like to write my own stories and through them to illuminate
the changes and development of the nation.

LPS: Any particular advice that you would like to give for a young student having the
academic career in mind?

Fang: We would like to see in our young scholars the team spirit, perseverance, tolerance,
and ability to work hard and endure hardship. For research students, we would like them to
pay more attention to seminars, as many good ideas come from discussion and exchange.

LPS: Thank you very much for your time devoted to this interesting conversation, Kai-Tai!
It was indeed a great pleasure for us.
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Twenty-six years of the International
Workshop on Matrices and Statistics

(IWMS): 1990–2015
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Abstract We present a short history of the International Workshop on Matrices and Statistics
(IWMS). The first IWMS was held in Tampere, Finland, in 1990, and the 24th IWMS will be held
at Hainan Normal University, Haikou City (Hainan Island), China (25–28 May 2015); see IWMS-2015
website and IWMS-2015 announcement.

We have established an open-access website for all twenty-four IWMS at the University of Tampere:
http://www.sis.uta.fi/tilasto/iwms/ where we intend to put all associated reports and photographs
of the IWMS from 1990 onwards, including those published in Image: The Bulletin of the International
Linear Algebra Society. Complete videos, prepared by Jarmo Niemelä and Reijo Sund, of the talks at
two pre-IWMS Tampere conferences in statistics in 1987 and 1990 are on YouTube.

Keywords IWMS; Workshop; Matrices and Statistics

1 Background
The first workshop in the International Workshop on Matrices and Statistics (IWMS)

series took place at the University of Tampere in Tampere, Finland, 6–8 August 1990. This
workshop was organized by a local committee from the Statistics Unit of the Department
of Mathematical Sciences at the University of Tampere. The key persons in the organiz-
ing committee were Pentti Huuhtanen, Erkki Liski, Tapio Nummi, Tarmo Pukkila, Simo
Puntanen, and George P. H. Styan. There was no idea at that time that this would be
the beginning of an almost annual series of meetings. This first IWMS was actually called
“The International Workshop on Linear Models, Experimental Designs, and Related Ma-
trix Theory”. Since 1990 the name has changed twice, and in 1998 the IWMS became the
“International Workshop on Matrices and Statistics”, following a suggestion by Professor
C. Radhakrishna Rao.

In 1990 in Tampere there were 98 participants from 18 different countries. The
Keynote Address in 1990 was given by C. Radhakrishna Rao. The invited speakers were

Jerzy K. Baksalary
R. Dennis Cook
Yadolah Dodge
Shanti S. Gupta

Sujit Kumar Mitra
Seppo Mustonen
Heinz Neudecker
Ingram Olkin

Friedrich Pukelsheim
Jagdish N. Srivastava
George P. H. Styan

The organizers of the group meetings were
∗Corresponding author. Email: simo.puntanen@uta.fi
†Email: geostyan@gmail.com

Souvenir Booklet of the 24th International Workshop on Matrices and Statistics, 
25-28 May 2015, Haikou, Hainan, China. Pages 40-58. Ed. Jeffrey J. Hunter. 
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Jerzy K. Baksalary
Tadeusz Caliński
R. Dennis Cook,
R. William Farebrother
Yasunori Fujikoshi
T. P. Hettmansperger

Sanpei Kageyama
Jürgen Kleffe
Sujit Kumar Mitra
Seppo Mustonen
Friedrich Pukelsheim
Jorma Rissanen

Kirti R. Shah
George P. H. Styan
Götz Trenkler
Song-Gui Wang
Haruo Yanai

Many of these persons have also been active participants in later workshops. George P. H.
Styan has missed only one IWMS in 1990–2014 and thereby has the highest score of n− 1
attended IWMS. For the schedule of the first IWMS see the last page of this article.

The following is an up-to-date version of the aims of the IWMS:

The purpose of the IWMS is to stimulate research and, in an informal setting,
to foster the interaction of researchers in the interface between statistics and
matrix theory. The Workshop will provide a forum through which statisticians
may be better informed of the latest developments and newest techniques in
linear algebra and matrix theory and may exchange ideas with researchers from
a wide variety of countries.

Quite soon after the 2nd IWMS in Auckland, New Zealand, in 1992, the organizing sys-
tem for the IWMS found its form as two committees: International and Local. The Inter-
national Organizing Committee (IOC) for several years comprised R. William Farebrother
(UK), Simo Puntanen (Finland), George P. H. Styan (Canada), Hans Joachim Werner
(Germany). Recently, also S. Ejaz Ahmed (Canada), Jeffrey J. Hunter (New Zealand),
Augustyn Markiewicz (Poland), Götz Trenkler (Germany), Júlia Volaufová (USA), and
Dietrich von Rosen (Sweden), have joined the IOC; in 2008 George P. H. Styan was named
Honorary Chair of the IOC of the IWMS. It is of course worth emphasizing that a most
demanding task and responsibility for the meeting arrangements belongs to the local or-
ganizing committee.

The IWMS series has had three ILAS Lecturers: Gene H. Golub (1999), Jerzy K.
Baksalary (2003), Ravindra B. Bapat (2008), and a fourth Karl Gustafson will be in Haikou
(2015), two Nokia Lecturers: Ingram Olkin (2004) and C. Radhakrishna Rao (2005). Chris
Gotwalt will be an SAS Lecturer in 2015.

As IWMS Birthday Boys, the following have been celebrated: T. W. Anderson (80,
90), Lynn Roy LaMotte (70), Ingram Olkin (80, 90), C. Radhakrishna Rao (80), Muni
S. Srivastava (75), George P. H. Styan (65, 70, 75), and a Special Session for Tarmo
Pukkila (60) was held in 2006. In 2015 in Haikou there will be special birthday sessions
for Kai-Tai-Fang (75) and Simo Puntanen (70).

Memorial Sessions have been held for Bernhard Flury (1999), Sujit Kumar Mitra
(2004), Jerzy K. Baksalary (2005), Shayle R. Searle (2013), and Haruo Yanai (2014).

2 List of the workshops
We now present a list of the 23 Workshops that have been held from 1990 to 2014,

leading up to the 2015 Workshop in Haikou City, Hainan Island, China. The photographs
1, 7, 8, 10 and 13 are taken by the the University of Tampere photographer; the photograph
2 by the University of Auckland photographer; the photographs 18–19 by the Shanghai
University of Finance and Economics photographer; the photograph 5 by Hazel Hunter; the
photograph 21 by the University of Ljubljana photographer; the rest of the photographs
are taken by Simo Puntanen.
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Figure 1: Group of participants in IWMS-1990, Tampere; C. Radhakrishna Rao inviting more people
to the picture.

1990/1: International Workshop on Linear Models, Experimental Designs, and Related Matrix Theory Tam-
pere, Finland, 6–8 August 1990, n = 98.
Chair of the Organizing Committee: Erkki Liski. Programme.
Videos from the conferences in statistics in Tampere in 1987 and 1990, prepared by Jarmo Niemelä and
Reijo Sund.

1992/2: [2nd] International Workshop on Matrix Methods for Statistics, Auckland, New Zealand, 4–5 Decem-
ber 1992, n = 23.
Chair of the Organizing Committee: Alastair J. Scott. Report in Image.

1994/3: Tartu Satellite Workshop on Matrices in Statistics, Tartu, Estonia, 28 May 1994.
Local Chairs: Ene-Margit Tiit & Hannu Niemi, IOC Chair: George P. H. Styan.

1995/4: 4th International Workshop on Matrix Methods for Statistics, Montréal, Québec, Canada, 15–16 July
1995, n = 70.
Local and IOC Chair: George P. H. Styan. Report in Image.

1996/5: 5th International Workshop on Matrix Methods for Statistics, Shrewsbury, England, 18–19 July 1996,
n = 28.
Local and IOC Chair: R. William Farebrother. Programme. Report in Image.

1997/6: 6th International Workshop on Matrix Methods for Statistics, Istanbul, Turkey, 16–17 August 1997,
n = 40.
Local Chair: Fikri Akdeniz, IOC Chair: Hans Joachim Werner. Report in Image.

1998/7: 7th International Workshop on Matrices and Statistics, Fort Lauderdale, Florida, USA, 11–14 De-
cember 1998, in celebration of T. W. Anderson’s 80th birthday, n = 78. Programme.
Local Chair: Fuzhen Zhang, IOC Chair: George P. H. Styan. Report in Image.

1999/8: 8th International Workshop on Matrices and Statistics, Tampere, Finland, 7–8 August 1999, n = 95.
� The ILAS Lecturer: Gene H. Golub.
Memorial Session: Bernhard Flury (1951–1999).
Local and IOC Chair: Simo Puntanen. Programme.
http://www.uta.fi/laitokset/mattiet/workshop99/, Report in Image.

2000/9: 9th International Workshop on Matrices and Statistics, Hyderabad, India, 9–13 December 2000, in
celebration of C. Radhakrishna Rao’s 80th birthday, n = 100.
Local Chairs: S. B. Rao, P. Bhimasankaram, IOC Chair: Hans Joachim Werner.
Programme. Report in Image.

Simo Puntanen, George P. H. Styan

42

http://www.sis.uta.fi/tilasto/iwms/program-IWMS-1990-Tampere.pdf
https://www.youtube.com/playlist?list=PLqhVpoDMmrLlere4lqqEp26_MdboWUGv-
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-1992-Auckland.pdf
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-1995-Montreal.pdf
http://www.sis.uta.fi/tilasto/iwms/program-IWMS-1996-Shrewsbury.pdf
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-1996-Shrewsbury.pdf
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-1997-Istanbul.pdf
http://www.sis.uta.fi/tilasto/iwms/program-IWMS-1998-FortLauderdale.pdf
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-1998-FortLauderdale.pdf
http://www.sis.uta.fi/tilasto/iwms/program-IWMS-1999-Tampere.pdf
http://www.uta.fi/laitokset/mattiet/workshop99/
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-1999-Tampere.pdf
http://www.sis.uta.fi/tilasto/iwms/program-IWMS-2000-Hyderabad.pdf
http://www.sis.uta.fi/tilasto/iwms/report-IWMS-2000-Hyderabad.pdf


Figure 2: Group of participants in IWMS-2, Auckland, New Zealand, 4–5 December 1992.

2001/10: 10th International Workshop on Matrices and Statistics, Voorburg, The Netherlands, 2–3 August
2001, n = 54. Report in Image.
Local Chair: Patrick J. F. Groenen, IOC Chair: George P. H. Styan.

2002/11: 11th International Workshop on Matrices and Statistics, Lyngby, Denmark, 29–31 August 2002, in
celebration of George P. H. Styan’s 65th birthday, n = 65. Report in Image.
Local Chair: Knut Conradsen, IOC Chair: Hans Joachim Werner.

2003/12: 12th International Workshop on Matrices and Statistics, Dortmund, Germany, 5–8 August 2003,
n = 45.
� The ILAS Lecturer: Jerzy K. Baksalary.
Programme. Report in Image.
Local Chair: Götz Trenkler, IOC Chair: Hans Joachim Werner.

2004/13: 13th International Workshop on Matrices and Statistics, Będlewo, Poznań, Poland, 18–21 August
2004, in celebration of Ingram Olkin’s 80th birthday, n = 82.
� The Nokia Lecturer: Ingram Olkin.
Memorial Session: Sujit Kumar Mitra (1932–2004).
Local Chair: Augustyn Markiewicz, IOC Chair: Simo Puntanen.
http://matrix04.amu.edu.pl/, Programme. Report in Image. Poster.

2005/14: 14th International Workshop on Matrices and Statistics, Massey University, Albany Campus, Auck-
land, New Zealand, 30 March – 1 April 2005, n = 50.
� The Nokia Lecturer: C. Radhakrishna Rao.
Memorial Session: Jerzy K. Baksalary (1944–2005).
Local Chair: Jeffrey J. Hunter, IOC Chair: George P. H. Styan.
Website. Announcement. Programme. Report in Image. Flyer. Poster.

2006/15: 15th International Workshop on Matrices and Statistics, Uppsala, Sweden, 13–17 June 2006, n = 68.
Special Session for Tarmo Pukkila’s 60th birthday.
Local Chair: Dietrich von Rosen, IOC Chair: Hans Joachim Werner.
http://www.bt.slu.se/iwms2006/iwms06.html, Programme. Report in Image.

2007/16: 16th International Workshop on Matrices and Statistics, Windsor, Ontario, Canada, 1–3 June 2007,
n = 74,
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Figure 4: George P. H. Styan, T. W. Anderson, Fuzhen Zhang; Fort Lauderdale, December 1998.

in celebration of George P. H. Styan’s 70th birthday,
Local Chair: S. Ejaz Ahmed, IOC Chair: George P. H. Styan.
http://www.uwindsor.ca/units/iwms/main.nsf, Programme. Poster.

2008/17: 17th International Workshop on Matrices and Statistics, Tomar, Portugal, 22–26 July 2008, n = 80,
in celebration of T. W. Anderson’s 90th birthday.
� The ILAS Lecturer: Ravindra B. Bapat.
Local Chair: João T. Mexia, IOC Chair: Simo Puntanen.
http://www.iwms08.ipt.pt/, Programme. Report in Image. Poster. A special stamp.

2009/18: 18th International Workshop on Matrices and Statistics, Smolenice Castle, Slovakia, 23–27 June
2009, n = 67.
Local Chair: Viktor Witkovský, IOC Chair: Júlia Volaufová.
http://www.um.sav.sk/en/iwms2009.html, Programme. Poster.

2010/19: 19th International Workshop on Matrices and Statistics, Shanghai University of Finance and Eco-
nomics, China, 5–8 June 2010, n = 186.
Local Chair: Yonghui Liu, IOC Chair: Jeffrey J. Hunter.
http://www1.shfc.edu.cn/iwms/index.asp, Programme. Report in Image.

2011/20: 20th International Workshop on Matrices and Statistics, with the Tartu 9th Conference on Multi-
variate Statistics, Tartu, Estonia, 27–30 June 2011, n = 100.
Special Session for Muni S. Srivastava’s 75th birthday.
Local Chair: Kalev Pärna, Programme Committee Chair: Dietrich von Rosen,
Vice-Chair: Tõnu Kollo.
http://www.ms.ut.ee/tartu11/

2012/21: 21st International Workshop on Matrices and Statistics, with the LinStat-2012, Będlewo, Poznań,
Poland, 16–20 July 2012, n ≈ 100
Special Session for George P. H. Styan’s 75th birthday.
Local Chair: Katarzyna Filipiak, LinStat Chair: Augustyn Markiewicz,
IWMS Chair: Simo Puntanen.
Programme. Report in Image.
http://linstat2012.au.poznan.pl/index.html.

2013/22: 22nd International Workshop on Matrices and Statistics, hosted at the University of Toronto by the
Fields Institute, Toronto, Ontario, Canada, 12–15 August 2013.
IWMS Chair: S. Ejaz Ahmed.
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Memorial Session: Shayle R. Searle (1928–2013)
Special Session for Lynn Roy LaMotte’s 70th birthday. Programme. Report in Image. Poster.
“Shayle R. Searle: Pioneer in Linear Modelling.” Article by Jeffrey J. Hunter (2015), in Australian &
New Zealand Journal of Statistics.
http://www.fields.utoronto.ca/programs/scientific/13-14/IWMS/.

2014/23: 23rd International Workshop on Matrices and Statistics, Department of Mathematics, University of
Ljubljana, Ljubljana, Slovenia, 9–12 June 2014, n ≈ 60.
IWMS Chair: Hans Joachim Werner, Local Chair: Matjaž Omladič.
Special Sessions for Ingram Olkin’s 90th birthday.
Memorial Session: Haruo Yanai (1940–2013)
https://www.fmf.uni-lj.si/en/faculty/location/
A Linear Algebra Workshop (LAW) organized by Matjaž Omladič preceded the IWMS in Ljubljana from
June 4 to June 12.

2015/24: 24th International Workshop on Matrices and Statistics, Haikou City, Hainan Province, China, 25–
28 May 2015.
� The ILAS Lecturer: Karl Gustafson
� The SAS Lecturer: Chris Gotwalt
Special Sessions for Kai-Tai Fang’s 75th birthday and for Simo Puntanen’s 70th birthday.
IWMS Chair: Jeffrey J. Hunter, Local Chair: Chuanzhong Chen.
Announcement.
http://iwms2015.csp.escience.cn/dct/page/1

3 Special issues of journals devoted to the IWMS
Selected refereed papers presented at the IWMS have been (or are about to be) pub-

lished in the following journal special issues:
1992: Third Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 176

(1992), viii + 289 pp. (Includes 8 research papers presented at the Workshop held in Tampere, Finland,
6–8 August 1990.) Preface. DOI.
Jerzy K. Baksalary & George P. H. Styan, eds.

1993: Journal of Statistical Planning and Inference, vol. 36, no. 2–3 (1993), pp. 127–432. (24 research papers
presented at the Workshop held in Tampere, Finland, 6–8 August 1990.) Preface. Author index. DOI.
Jerzy K. Baksalary & George P. H. Styan, eds.

1994: Fourth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 210
(1994), 273 pp. Preface. DOI.
Jeffrey J. Hunter, Simo Puntanen & George P. H. Styan, eds.

1996: Fifth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, In Celebration
of C. Radhakrishna Rao’s 75th Birthday. vol. 237/238 (1996), vii + 273 pp. Author index.
Ravindra B. Bapat, George P. H. Styan & Hans Joachim Werner, eds.

1997: Sixth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 264
(1997), ix + 506 pp. Preface. DOI.
R. William Farebrother, Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

1999: Seventh Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 289
(1999), iv + 344 pp. Preface. DOI.
R. William Farebrother, Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2000: Eighth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 321
(2000), xi + 412 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2002: Ninth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 354
(2002), xii + 291 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2004: Tenth Special Issue on Linear Algebra and Statistics, Part 1: Linear Algebra and its Applications, vol.
388 (2004), 400 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2005: Tenth Special Issue on Linear Algebra and Statistics, Part 2: Linear Algebra and its Applications, vol.
410 (2005), 290 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2005: Research Letters in the Information and Mathematical Sciences, vol. 8 (2005), v + 228 pp. Special
Issue: Proceedings of the 14th International Workshop on Matrices and Statistics, Auckland, New
Zealand, 30 March–1 April 2005. Foreword. Available online.
Jeffrey J. Hunter & George P. H. Styan, eds.

2006: Linear Algebra and its Applications, vol. 417 (2006), Proceedings of the 13th International Workshop
on Matrices and Statistics, Będlewo, Poznań, Poland, 18–21 August 2004. Preface. DOI.
Ludwig Elsner, Augustyn Markiewicz & Tomasz Szulc, eds.
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http://dx.doi.org/10.1016/S0024-3795(97)00285-1
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http://dx.doi.org/10.1016/S0024-3795(99)00008-7
http://www.sis.uta.fi/tilasto/iwms/LAA-v321-preface-2000.pdf
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http://www.sis.uta.fi/tilasto/iwms/LAA-v410-preface-2005.pdf
http://dx.doi.org/10.1016/j.laa.2005.08.016
http://www.sis.uta.fi/tilasto/iwms/Auckland-IWMS-2005-foreword.pdf
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Figure 7: Jerzy K. Baksalary giving a talk in Tampere, August 1990. Front row: Shanti S. Gupta,
J.N. Srivastava, Song-Gui Wang, Götz Trenkler, Stanisław Gnot.

2009: Linear Algebra and its Applications, vol. 430, no. 10 (2009), pp. 2563–2834, Proceedings of the 16th
International Workshop on Matrices and Statistics, Windsor, Ontario, Canada, 1–3 June 2007. Preface.
DOI.
S. Ejaz Ahmed, Jeffrey J. Hunter, George P. H. Styan & Götz Trenkler, eds.

2010: Acta et Commentationes Universitatis Tartuensis de Mathematica, vol. 14, 2010. Proceedings of the
18th International Workshop on Matrices and Statistics, Smolenice Castle, Slovakia, 23–27 June 2009.
Tõnu Kollo, Dietrich von Rosen, Viktor Witkovský & Júlia Volaufová, eds.

2011: Acta et Commentationes Universitatis Tartuensis de Mathematica, vol. 15, nr. 1, 2011. Proceedings
of the 19th International Workshop on Matrices and Statistics. Shanghai University of Finance and
Economics, China, 5–8 June 2010. Shanghai IWMS.
Tõnu Kollo & Dietrich von Rosen, eds.

2012: Special volume of Acta et Commentationes Universitatis Tartuensis de Mathematica, vol. 16, 2012.
Proceedings of The 9th Tartu Conference on Multivariate Statistics & IWMS-2011. Simo Puntanen, ed.

2013: Multivariate Statistics: Theory and Applications, World Scientific, devoted to The 9th Tartu Con-
ference on Multivariate Statistics & IWMS-2011. ISBN: 978-981-4449-39-7 (hardcover). Tõnu Kollo,
ed.

2013: IWMS-2012 and LinStat-2012: A special issue of Discussiones Mathematicae - Probability and Statis-
tics, vol. 33, 2013, Devoted to IWMS-2012 and LinStat-2012. Preface. Coordinating Editor: Roman
Zmyślony, Guest Editors: Carlos A. Coelho and Simo Puntanen.

2014: IWMS-2012 and LinStat-2012: Communications in Statistics - Theory and Methods, Volume 43, Issue
5, 2014. Special Issue: Advances on Linear Models and Inference. Devoted to IWMS-2012 and LinStat-
2012. Preface. Guest Editors: Júlia Volaufová and Augustyn Markiewicz.

2014: IWMS-2012 and LinStat-2012: Communications in Statistics - Simulation and Computation, Volume
43, Issue 9, 2014. Special Issue: Advances on Linear Models and Inference – Computational Aspects.
Devoted to IWMS-2012 and LinStat-2012. Preface. Guest Editors: Katarzyna Filipiak and Simo Pun-
tanen.

2015: IWMS-2013: A special issue of Journal of Statistical Computation and Simulation. Editor: S. Ejaz
Ahmed. [In progress]

2015: IWMS-2014: A special issue of Operators and Matrices. Devoted to IWMS-2014. Guest Editors: Jeffrey
J. Hunter, Mitja Mastnak, Matjaž Omladič, and Simo Puntanen. [In progress]

2015: IWMS-2015: Souvenir Booklet of the 24th International Workshop on Matrices and Statistics (25–28
May 2015), Haikou City, Hainan Island, China. Editor: Jeffrey J. Hunter. [In progress]

2015: IWMS-2015: Special Issue of Special Matrices. Editors: Jeffrey J. Hunter, Simo Puntanen and Dietrich
van Rosen. [In progress]
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Figure 8: R. Dennis Cook, Norman Draper, Nye John, George P. H. Styan; Tampere, August 1990.

Figure 9: Ravindra B. Bapat, Tomar, Portu-
gal, July 2008.

Figure 10: Ingram Olkin, Tampere, August
1990. With Jerzy K. Baksalary and Yadolah
Dodge.
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Figure 11: C. Radhakrishna Rao, Istanbul,
August 1997.

Figure 12: C. Radhakrishna Rao and Bhar-
gavi Rao, Hyderabad, December 2000.

Figure 13: Jerzy K. Baksalary, Tadeusz Caliński, Sujit Kumar Mitra; Tampere, August 1990.
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Figure 14: Gene H. Golub, Ingram Olkin, T. W. Anderson; Montréal, July 1995.

Figure 15: Gene H. Golub, X.X., Bikas K. Sinha, Ingram Olkin, Augustyn Markiewicz, Ludvig Elsner,
Yongge Tian; Będlewo, Poznań, August 2004.
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Figure 16: Enjoying the IWMS banquet (and the view to Detroit) in Windsor, Canada, June 2007.

Figure 17: In an after-dinner session in Smolenice Castle in July 2009, Tõnu Kollo (smiling in the
picture) tentatively agreed to organize the IWMS-2011 in Tartu. Left: Soile Puntanen, right: Miroslav
Fiedler.
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12 13 

International Workshop on Linear Models, Experimental Designs & Related Matrix Theory 

6-8 5Iugust 1990, 'University of fJ'ampere, fJ'ampere, :Finland 

Monday, 6 August 

10:00--10:45 Opening Session: 
Tarmo PUKKllA 

Chair: E.P. Liski 
C. Radhakrishna RAO 

Chair: G.P.H. Styan 

Invited Talk: 
10:45-11 :30 Ingram OLKIN 

Chair: lK. Baksalary 

11 :30-12:45 
" Lundi 

Invited Talks: 
12:45-13:30 Sujit Kumar MITRA 
13:30-14:15 R. Dennis COOK 

Chair: F. Pukelsheim 

14:15-14:45 .!! Coffee 

Group Meetings: 
14:45-15:45 Gustav Elfving: 

1908-1984 

16:15-17:45 Mustonen Calinski 
Farebrother -I 

17:45-19:15 Rissanen Kageyama 
Farebrother -2 

20:00--... Tn ~ception 

Tuesday,. 7 August 

r 
Group Meetings: 

8:00-9:30 Trenlder-I Wang 
Hettmansperger 

9:30-11 :30 Cook Baksalary 

11 :30-12:45 " Lundi 

Group Meetings: 
12:45-14:15 Mitra Farebrother-3 
14:15-15:45 Srivastava Yanai 

Farebrother4 

15:45-16:15 .. Coffee 

Group Meetings: 
16:15-17:45 Fujikoshi Pukelsheim 

Trenlder-2 
17:45-19:15 Styan Kleffe Neudecker 

20:30-... .. ~ .. 
Sauna Party 

Wednesday, 8 August 

Group Meetings: 
8:00--9:30 Shah Farebrother-5 

9:30-11 :00 Editorial Policy in 
Statistical Journals 

11 :00-11 :30 Jilt Coffee 

11:30-12:15 Keynote Address: 
C. Radhakrishna RAO 

Chair: T. CaliIlski 

12:15-13:30 " Lunc.n 
Invited Talks: 

13:30-14:00 JagdishN. SRIVASTAVA 
14:00--14:30 Shanti S. GUPTA 
14:30-15:00 Yadolah DODGE 

Chair: T.P. Hettmansperger 

15:00--15:30 .It Coffee 

15:30-16:00 Heinz NEUDECKER 
16:00--16:30 Friedrich PUKELSHEIM 

Chair: N.R. Draper 

16:30-17:00 .. Coffee 

1700-17:30 George P. H. STYAN 
17:30-18:00 Jerzy K. BAKSALARY 

Chair: T. Pukkila 

The fIrst-mentioned groups meet in Room A I, the second in C IX (except on Monday in the Main Auditorium), and the third in A ill. 

Figure 22: Schedule of the first IWMS; Tampere, 6–8 August 1990.

Simo Puntanen, George P. H. Styan

58



An indexed illustrated bibliography for Simo
Puntanen in celebration of his 70th birthday

George P. H. Styan1,∗ Ka Lok Chu2,†

1McGillUniversity, Montréal (Québec), Canada
2Dawson College, Westmount (Québec), Canada

Abstract Many happy returns, Simo! To celebrate over 25 years of collaboration, we present an
indexed and illustrated bibliography on the occasion of your 70th birthday on 20 July 2015. This
bibliography, which is also annotated and hyperlinked, identifies over 60 publications with both Simo
Puntanen and George P. H. Styan as co-authors, our so-called “PunStys”. Some selected preprints are
included.

Keywords Simo Puntanen, 70th birthday, bibliography

1 Introduction
Many happy returns, Simo! To celebrate over 25 years of collaboration, we present

an indexed and illustrated bibliography on the occasion of your 70th birthday on 20
July 2015. We begin with this fully-magic most-perfect Graeco-Latin square:

S =


20 7 45 70

45 70 20 7

70 45 7 20

7 20 70 45

, P =


20 7 45 70

70 45 7 20

7 20 70 45

45 70 20 7

; mSP = 142 = 2× 71.

∗Corresponding author. Research supported, in part, by the Natural Sciences and Engineering Council of
Canada. This file compiled on 15 April 2015. Email: geostyan@gmail.com
†Email: gchu@dawsoncollege.qc.ca

Souvenir Booklet of the 24th International Workshop on Matrices and Statistics, 
25-28 May 2015, Haikou, Hainan, China. Pages 59-67. Ed. Jeffrey J. Hunter. 
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This bibliography identifies over 60 publications with both emeriti Simo Puntanen and
George P. H. Styan as co-authors, our so-called “PunStys”. Some selected preprints are
included. A fully-indexed and hyperlinked version is in preparation.
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Unified Speed Estimation of Various Stabilities

Mu-Fa Chen1,∗

1 Beijing Normal University

Abstract The main topic of this talk is the speed estimation of stability/instability. The word “various” comes
with no surprising since there are a lot of different types of stability/instability and each of them has its own natural
distance to measure. However, the adjective “unified” is very much unexpected. The talk surveys our recent
progress on the topic, made in the past five years or so.

Keywords Speed estimation; Stability; Birth–death process

In the next section, we introduce our first unified result: Theorem 1. Then, several extensions
or generalizations of Theorem 1 are collected briefly in Section 2.

1 Basic estimates of the first non-trivial eigenvalue
Here is our first stability, the exponential stability in the ergodic case. Given a Markov chain

on a countable E with transition probability P(t) = (pi j(t) : i, j ∈ E) (t > 0), in the irreducible
ergodic case, we have a stationary distribution π: πP(t) = π for all t > 0. Then, we have

pi j(t)→ π j as t → ∞ for all i, j.

We are now looking for the exponential convergence speed (rate) ε:

pi j(t)−π j = Cie−εt , t > 0, i, j ∈ E.

Define the Q-matrix by

Q = (qi j : i, j ∈ E) =
d
d t

P(t)
∣∣∣∣
t=0

(pointwise).

In the reversible case, we have εmax = λ1, where λ1 is the smallest (the first nontrivial) eigenvalue
of −Q: Qg =−λg for some g 6= constant.

Let us now consider a simpler birth–death Q-matrix on E = {0,1,2, . . .}:

Q =




−b0 b0 0 0 . . .
a1 −(a1 +b1) b1 0 . . .
0 a2 −(a2 +b2) b2 . . .
...

. . . . . . . . .


 ,

where ak, bk > 0. Since the sum of each row equals 0, we have Q1= = 0 ·1, where 1 is the vector
having elements 1 everywhere and is the zero vector. This means that the Q-matrix has a trivial
eigenvalue λ0 = 0 with eigenvector 1. Our question is what is the next eigenvalue λ1 of −Q?

∗Supported supported in part by the National Natural Science Foundation of China (# 11131003), the “985” project from the Ministry
of Education in China, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Email: mfchen@bnu.edu.cn
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Actually, the story is much harder than it looks like, as shown in [3; pages 1–3], even for
E = {0,1,2,3}. The reader is urged strongly to have some personal computation or have a look at
the pages just mentioned.

We now show that the story is even much more complicated. Let E = {0,1, . . . ,N} with
N < ∞ for a moment. Consider the eigenvalue problem:

Qg =−λg, g 6= 0

with Dirichlet boundary at 0: g0 = 0 and Neumann boundary at N: gN = gN+1. Using codes ‘D’
and ‘N’, we may denote this minimal eigenvalue λ by λ DN. Actually, the DN case is well studied
in the history. Obviously, except the DN case, we should have three more cases: ND, DD, and NN.
The last one, λ NN, denotes the ergodic rate λ1 just mentioned above, for which the constraint is not
at the endpoints but is having mean zero.

In the non-ergodic case, the symmetric measure µ can not be finite. Hence, the exponential
convergence rate is changed to be the exponential decay rate:

ergodic case : pi j(t)−π j = Cie−εt , t > 0, εmax = λ NN;

non-ergodic case : pi j(t) = Cie−εt , t > 0, εmax = λ #, i, j ∈ E,

where # = DN, ND, or DD.

Altogether, there are four cases: NN, DD, DN, and ND.
To state our main result, we need a standard notion. Return to our general state space E =

{0,1, · · · ,N}, N 6 ∞. Define

µ0 = 1, µn =
b0b1 · · ·bn−1

a1a2 · · ·an
, 1 6 n 6 N.

For general N 6 ∞, the principal eigenvalue λ # defined above has to be extended to the largest λ
satisfying √

λ ‖ f‖µ,2 6 ‖∂ f‖ν ,2 (1)

with one of the four boundary conditions, where ‖ · ‖µ,q denotes the Lq(µ)-norm and

νi =

{
ν−i = µiai i 6 θ
ν+

i = µibi θ 6 i < N +1;

∂i f =

{
(∂i f )− = fi−1− fi i 6 θ
(∂i f )+ = fi+1− fi θ 6 i < N +1

and θ ∈ E is a reference point.
The author started to study λ NN in 1988 (cf. [2, 3]), but the following result (the first unified

exponential rate estimation) was obtained in 2010 [5] only.

Theorem 1.
For the first non-trivial eigenvalue λ # defined above, we have the following unified basic
estimates: (

4κ#)−1 6 λ # 6
(
κ#)−1

,

where
(
κNN)−1 = inf

n,m∈E,m<n

[( m

∑
i=0

µi

)−1

+
( N

∑
i=n

µi

)−1]( n−1

∑
j=m

1
µ jb j

)−1

(
κDD)−1 = inf

n,m∈E,m6n

[( m

∑
i=0

1
µiai

)−1

+
( N

∑
i=n

1
µibi

)−1]( n

∑
j=m

µ j

)−1
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κDN = sup
n∈E

( n

∑
i=0

1
µiai

)−1( N

∑
j=n

µ j

)−1

κND = sup
n∈E

[( n

∑
i=0

µi

)−1( N

∑
j=n

1
µ jb j

)−1

.

In particular, λ # > 0 iff κ# < ∞.

Note that if we define ν̂k = (µkbk)−1, and in the DD and DN cases, under the sum ∑m
k=−M,

we modify ν̂k to be (µkak)−1 (noting that when k ∈ E, µkbk = µk+1ak+1), then the basic estimates
given in the theorem can be described completely by two measures µ and ν̂ . The upper and lower
bounds are the same up to a universal constant 4 only. It is easy to see that the two endpoints 0 and
N are symmetric in these two constants.

Finally, we mention that the DN and ND cases are known around 1970 in harmonic analysis,
our main contribution is for the cases of DD and NN, especially the two isoperimetric constants
κNN and κDD (come from [5; Corollaries 7.8 and 7.9]). In the proof of the DD and NN cases, three
advanced mathematical tools are used and its proof given in [5] consists of five steps. Later, a
direct elementary proof was found in [6]. It then leads to the study in the next section.

2 Generalizations
2.1 Bilateral case

Clearly, the birth-death process studied in the last section can be extended to the bilateral
one with state space E = {i : −M− 1 < i < N + 1}, where M,N 6 ∞, and with evolution rates:
qi,i+1 = bi, qi,i−1 = ai, and qi j = 0 for other j 6= i, i, j ∈ E. In this case, the symmetric measure µ is
defined as follows.

µθ+n =
aθ−1aθ−2 · · ·aθ+n+1

bθ bθ−1 · · ·bθ+n
, −M−1−θ < n 6−2,

µθ−1 =
1

bθ bθ−1
, µθ =

1
aθ bθ

, µθ+1 =
1

aθ aθ+1
,

µθ+n =
bθ+1bθ+2 · · ·bθ+n−1

aθ aθ+1 · · ·aθ+n
, 2 6 n < N +1−θ .

where θ ∈ E is a reference point. In this bilateral case, Theorem 1 remains the same. Refer to [5].

2.2 Bilateral Hardy-type inequalities
Obviously, the Poincaré inequalities (1) can be generalized to the following

‖ f‖µ ,q 6 A#‖∂ f‖ν , p, f ∈ Lq(µ) (2)

for p,q ∈ [1,∞]. This and the parallel inequalities with different boundary condition consist of the
bilateral Hardy-type inequalities. When q > p, a generalization of Theorem 1 is given in [7] in the
continuous context and in [14] in the discrete one.

2.3 Normed linear space (B,‖ · ‖B,µ)
In many applications (Sobolev inequalities, logarithmic Sobolev inequalities, Nash inequali-

ties, and so on), the Lq-norm in (2) is not enough. This leads to the extension to a normed linear
space B which is a linear subset of Borel measurable functions on (E,µ) with a specific norm
‖ · ‖B. In other words, instead of (2), we study the following Hardy-type inequalities

‖| f |q‖1/q
B 6 A#

B‖∂ f‖ν , p, f ∈ B
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with different boundary conditions as before. Our result is presented in [1, 7]. For the last two
topics, some popular reports are presented in [7–12].

2.4 Birth–death processes with killing
For the remainder of this section, we consider the birth–death processes with killing on E =

{0,1,2, . . . ,N}, N 6 ∞. Its Q-matrix becomes

Qc =




−(b0 + c0) b0 0 0 · · ·
a1 −(a1 +b1 + c1) b1 0 · · ·
0 a2 −(a2 +b2 + c2) b2 · · ·
...

...
. . . . . . . . .




with ai > 0, bi > 0, and ci > 0 for every i ∈ E. Clearly, this is a special type of tridiagonal or
Jacobi’s matrix. Assume that ci 6≡ 0 on (0,N), otherwise, we would return to Section 1. Even
though the spectral problem becomes much harder than before, since a new sequence of parameter
(ci) is added, we are lucky to obtain a result in parallel to Theorem 1. Refer to [13, 9].

2.5 Discrete spectrum
We say that the matrix Qc (or its quadratic form) on L2(µ) has discrete spectrum if its spectrum

consists of only eigenvalues with finite multiplicity. Since an operator on a finite space is compact
and hence must have discrete spectrum, we need only consider an infinite state space. Next, since
the whole line can be split into two half lines, without loss of generality, we assume that E =
{0,1, . . .}. In this subsection, we allow ci|(0,N−1) ≡ 0. This problem is solved completely by [9;
Theorem 2.1], based on [13]. From the last cited paper, one finds interesting story on isospectral
operators.
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Magic Squares and Postage Stamps

Ka Lok Chu1,∗ George P. H. Styan2,†

1Dawson College, Westmount (Québec), Canada
2McGill University, Montréal (Québec), Canada

Abstract We present a philatelic introduction to magic squares, beginning with the well-known
4× 4 Dürer magic square in Melencolia I (1514) by Albrecht Dürer (1471–1528) depicted in sheetlets
from Aitutaki/Cook Islands (1986), Mongolia (1978), Djibouti (2007), and the Comores (1978). We
also found a Franklin bent-diagonal magic square on a postage stamp from the USA (2006), which
also shows a whirlwind and water spouts, from Benjamin Franklin’s Experiments and Observations on
Electricity (1769). On 9 October 2014, Macau Post issued a set of several philatelic items for magic
squares [2]. Two stamps feature magic-square palindromes: the 5× 5 Sator–Arepo (c. 100 AD) and a
15× 15 detail from the 29× 29 Su Hui palindrome (c. 357 AD). The set also includes a souvenir sheet
(1) featuring the 3 × 3 Luoshu and a first-day cover (Fig. 13) with a 9 × 9 Hendricks diamond-inlaid
magic square.

Keywords Dürer, Melencolia I, Macau, magic squares, philatelic items, Luoshu
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Sheetlets from Djibouti (2007) & Aitutaki (1986) August 21, 2013 JSM-8/24

We do not know what is represented in the selvage of the Djibouti sheetlet (left panel).
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MELENCOLIA:I
by Albrecht Dürer
Aitutaki (Cook Islands) 
1986: Scott 391

MELENCOLIA:I
by Albrecht Dürer 

Mongolia 1978: Scott 1039

Benjamin Franklin, Scientist 
USA 2006: Scott 4022

PHILATELIC INTRODUCTION TO MAGIC SQUARES                                                                                                 page 4

Scott numbers are as given in the Scott 2007 Standard Postage Stamp Catalogue, 163rd edition
(on paper in 6 volumes and on 12 CD-ROMs with text-searchable pdf files)  edited by James E. Kloetzel, 

pub. Scott Publishing, Sidney, Ohio, 2006 (with updates in the Scott Stamp Monthly).

Figure 2.7: Melencolia I sheetlet marking the 450th death anniversary of Albrecht Dürer:
Mongolia 1978, Scott 1039.

In 1978 Mongolia issued a pair of sheetlets of stamps for anniversaries of four European painters:

Albrecht Dürer (1471–1528), Eugène Henri Paul Gauguin (1848–1903), Vincent Willem van Gogh

(1853–1890), and Francisco José de Goya y Lucientes (1746–1828). The two sheetlets (Figures

2.7 and 2.8) were issued in 1978, marking the 450th death anniversary of Dürer, the 75th death

anniversary of Gauguin, the 125th birth anniversary of van Gogh, and the 150th death anniversary

of Goya.

Ka Lok Chu & George P. H. Styan13 Classic magic squares
Figure 1: (left panel): Aitutaki/Cook Islands (1986); (right panel): Mongolia (1978).
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(1853–1890), and Francisco José de Goya y Lucientes (1746–1828). The two sheetlets (Figures

2.7 and 2.8) were issued in 1978, marking the 450th death anniversary of Dürer, the 75th death

anniversary of Gauguin, the 125th birth anniversary of van Gogh, and the 150th death anniversary

of Goya.

Ka Lok Chu & George P. H. Styan13 Classic magic squares
Figure 2: (left panel): Djibouti (2007); (right panel): Comores (1978).

1 Melencolia I (1514) by Albrecht Dürer
We begin this talk, which is based in part on the recent talks [13, 14], see also [16], with
the well-known 4× 4 magic square in Melencolia I (1514) by Albrecht Dürer (1471–1528)
depicted in sheetlets from Mongolia (1978), Aitutaki/Cook Islands (1986), and Djibouti
(2007). The Dürer magic square appears in the detail (in the selvage, top right) of a
sheetlet (Fig. 2) featuring Dürer’s painting Oswolt Krel (1499) from the Comores (1978).
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We have tried to illustrate this talk, as far as
possible, with images of postage stamps and
other philatelic items. The auction website
delcampe.com has been particularly helpful
with this endeavour.

A philatelic introduction to magic squares of 
Michael Stifel (1487--1567), Albrecht Dürer (1471--1528), 

Benjamin Franklin (1706--1790), and 
a Latin square of Felix Klein (1849--1925)

by George P. H. Styan

George P. H. Styan4 Golden magic matrices

Figure 3: Two Marke Individuell MaPhyPhil from Germany (2013). On the left a detail
from Dürer’s Melencolia I (see also Fig. 4) and on the right a 5× 5 bordered magic square
by the German monk and mathematician Michael Stifel (1487–1578) from his Arithmetica
Integra [12, (1544)].

Figure 4: 4.00 Ptcs stamp from Macau, China (2014).

The Dürer matrix D with magic sum m = 34 in Fig. 4 is Dudeney Type III in that

DF+ FD = 1
2
mE (2)

where F is the flip (reverse-identity) matrix and every entry of E is equal to 1 (see also Fig.
5). Moreover, all the entries in each of the top-left, top-right, bottom-left, bottom-right
and centre-heart 2× 2 submatrices sum to the magic sum m = 34.
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Figure 5: Souvenir sheet from Macau, China (2014) featuring 6 magic-square stamps and
the 12 Dudeney groups [3] for 4 × 4 classic magic squares. See also Fig. 4, 7, 8, 11, 14.
Stamps for 8 Ptcs, 1 Ptc and 6 Ptcs are scheduled to be issued by Macau Post in 2015.
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2 Benjamin Franklin (1706–1790) & Simon de la Loubère
(1642–1729)

Dürer
 1514

PHILATELIC INTRODUCTION TO MAGIC SQUARES                                                                                                page 7

Bent-diagonal square by 
Benjamin Franklin (1706--1790)

‘‘In addition to a page [with three figures] from Franklin’s  
Experiments and Observations on Electricity (1769), 

depicting [a whirlwind,] water spouts and a “magic square”, 
the stamp also includes a whimsical 19th-century Currier and 

Ives lithograph depicting Franklin and his son performing 
the legendary electricity experiment with a kite; a schematic 
drawing of Franklin’s “three-wheeled clock” from the late 
18th-century book Select Mechanical Exercises by James 

Ferguson; and a depiction of Franklin at a writing desk from 
a mural by Charles Elliott Mills.’’ [USPS]

USA 2006: Scott 4022

!

Figure 6: Stamp from the USA 2006 (Scott 4022) with bent-diagonal Franklin magic square
in a detail from Water-spouts and Whirlwinds (1753) by the postmaster, scientist, inventor,
statesman, and diplomat Benjamin Franklin (1706–1790). See also Fig.7 (left panel). For
more on bent-diagonal Franklin magic squares see the excellent book by Pasles [7].

Figure 7: (left panel) 3.00 Ptcs stamp with bent-diagonal Franklin magic square from
Macau, China (2014), see also Fig. 6; and (right panel) 9.00 Ptcs stamp from Macau,
China (2014) featuring a 5× 5 magic square and its construction method as given by the
French diplomat, writer, mathematician and poet Simon de La Loubère (1693) [4, p. 229];
see also Pherū [8, p. 171] and Wikipedia [11].
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3 Su Hui (fl. c. 357 AD) and her poem Xuan Ji Tu
Su Hui (poet)

This is a Chinese name; the family name is Su (蘇, Sū).
Su Hui (traditional Chinese: 蘇蕙; simplified Chinese:

Su Hui, from an Eighteenth Century book, Wan hsiao tang, by
Kuan-Shou.

苏蕙; pinyin: Sū Huì, Fourth Century CE) was a Chinese
poet of theMiddle Sixteen Kingdoms period (304 to 439)
during the Six Dynasties period. Her courtesy name is
Yun Yan (traditional Chinese: 若蘭; simplified Chinese:
若兰; pinyin: Ruò Lán). Su is famous for her extremely
complex“palindrome”(huiwen回文) poem, apparently
having innovated this genre, as well as producing themost
complex example to date.*[1]

1 Biography

The Jin Dynasty (265–420) had briefly unified the Chi-
nese empire, in 280, but from 291 to 306 a multi-sided

Su Hui with her great palindrome, the Xuanji Tu.

civil war known as the War of the Eight Princes raged
through northern China, devastating that part of the coun-
try. For the first thirteen years this was an all-out struggle
for power among princes and dukes. Then in 304 CE
the leader of the formerly independent ethnic nation of
the Northern Xiongnu declared independence, under its
newly declared Grand Chanyu, Liu Yuan (later Prince
Han Zhao). Various other non-Han Chinese groups be-
came involved, in what is known as the Wu Hu uprising.
By 317 the last Jin prince left standing, now as emperor,
ruled an empire reduced to its former southern area, and
the former northern part of the Jin empire had been sub-
divided into a number of independent states. In 351, the
state of Former Qin was founded, and by 376 it had suc-
ceeded in unifying northern China. Su Hui was a poet of
the kingdom of Former Qin (351-394). She was from a
literate family, in what is now Fufeng County, in Shaanxi
Province. She was the third daughter of Su Daozhi. Su
Hui married at sixteen (fifteen, by Western reckoning),
and went to live with her husband, Dou Tao, to what
is now Qinzhou District, Tianshui, Prefecture, in Gansu
Province, where he was the governor.

2 Palindrome Poem: Xuanji Tu

Su Hui was known for an important and unusual poem.
This was described in contemporary sources as shuttle-
woven on brocade, meant to be read in a circle, and con-
sisting of 112 or else 840 characters. By the Tang period,
the following story about the poem was current:*[2]

Dou Tao of Qinzhou was exiled to the desert,
away from his wife Lady Su. Upon departure
from Su, Dou swore that he would not marry
another person. However, as soon as he arrived
in the desert region, hemarried someone. Lady

1

Figure 8: Shown on the stamp is the inner-central 15× 15 detail of the 29× 29 palindrome
poem Xuan Ji Tu, literally “armillary-sphere map”, by Su Hui (fl. c. 357 AD). See also
Fig. 9.

Figure 9: The complete 29× 29 palindrome poem by Su Hui (c. 357 AD). See also Fig. 8.
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4 Zhang Heng (78–139 AD) and his armillary sphere

Figure 10: Zhang Heng (78–139 AD) created the first armillary sphere (left panel) in
c. 117 AD. He (right panel) was an astronomer, mathematician, inventor, geographer,
artist, poet, statesman, and literary scholar of the Eastern Han Dynasty in ancient China.

Su Hui’s poem Xuan Ji Tu is a palindrome that can be read in all directions. Such
poems are called in Chinese huiwen shi. Five colours of silk threads were used. The poem
contains 841 = 29 × 29 Chinese characters: there are 29 lines horizontally and vertically
that can be read in any which way, it always makes a poem. This poem created a sensation
in China, from Su Hui’s time onward. The Tang empress Wu Zetian, herself a poet, made
some 200 poems out of Su Hui’s creation. In the Song Dynasty, one scholar said there were
10 diagrams in there and he could decipher 3,752.

Su Hui conceived of and then embroidered this “map” for her husband who was in
another city and who had fallen for another woman. She sent Xuan Ji Tu to him. The
husband understood her meaning, had her brought to him and they then spent the rest of
their lives [happily?] together.

The poem is called Xuan Ji Tu, literally “armillary-sphere map” (Fig. 10). An armil-
lary sphere (spherical astrolabe, armilla, or armil) is a model of objects in the sky (in the
celestial sphere), consisting of a spherical framework of rings, centred on Earth, that rep-
resent lines of celestial longitude and latitude and other astronomically important features
such as the ecliptic. As such, it differs from a celestial globe, which is a smooth sphere
whose principal purpose is to map the constellations.
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6 Lee Sallows’s geometric magic square

MP1f = ``Lee Sallows -- Panmágico’’
= ``Eureka’’ Fig 7.3 (page TBC) in

 Geometric Magic Squares: A Challenging New Twist 
Using Colored Shapes Instead of Numbers  
by Lee C. F. Sallows (Dover 2013) GHK

Figure 11: Sallows “Eureka” geometric magic square [9, Fig. 18 (2011)], [10, Fig 7.3 (2013)].

For more about the Sallows “Eureka” geometric magic square (geomagic) square (Fig.
11) see The Mathematical Inteligncer article [9] and the excellent recent Dover book Geo-
metric Magic Squares [10].

5 Diamond-inlaid magic squares

Diamond-inlaid magic squares (see Fig. 12 and 13 below) were created c. 1991 by
David M. Collison (1937–1991) and John Robert Hendricks (1929–2007). The Hendricks
diamond-inlaid magic square (upper left panel here from the Macau Post First Day Cover)
is a 9× 9 bordered magic square with three inlaid magic squares, 1 each 3× 3, 5× 5, and
7 × 7. The 3 × 3 magic square is rotated 45 degrees and is called a “diamond inlay”. We
note that the smaller and larger numbers are mixed throughout the square, not just in the
outside border as they would be with traditional bordered magic squares.
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MP1g (on FDC MP4 & MP5): 
``Inlaid diamond magic square’’ by John R. Hendricks (1991)

http://www.magic-squares.net/Image_square/JH_3579.gif

http://www.magic-squares.net/magic_squares_index.htm

Figure 12: Hendricks diamond-inlaid magic square: (left panel) detail from Macau Post
First-Day Cover (Fig. 13 below).

Figure 13: Macau Post First Day Cover (9 October 2014) featuring the 3×3 Luoshu magic
square and a 9× 9 Hendricks diamond-inlaid magic square. See also Fig. 12 above and the
display (1).
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7 Anton Friedrich Wilhelm von Webern (1883–1945) and
the Sator-Arepo magic square

Philatelic notes on SATOR-ROTAS: 2jan07                                            page 22

Figure 14: The Austrian composer Anton Friedrich Wilhelm von Webern (1883–1945)
composed music using the Sator-Arepo magic square, which is inscribed on Webern’s
gravestone (left panel) in Mittersill (near Salzburg), Austria. The stamp (left panel) for
Webern is from Austria 1995, Scott 1691. The 2.00 Ptcs Sator-Arepo stamp (right panel)
is from Macau, China (2014). For more on the Sator-Arepo magic square, see Moeller [6].

An expanded version, based in part also on [1, 13, 14, 15, 16, 17], is in preparation.
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Classification of Magic Squares of Order 4

Kai-Tai Fang1,∗ Yuying Luo2,† Yanxun Zheng3,‡

1Division of Science and Technology, BNU-HKBU United International College
2Department of Biostatistics, Georgetown University, Washington D.C., USA
3Otsuka Pharmaceutical Company in Princeton, NJ, USA

Abstract With a history of more than 3000 years, magic squares still are mysterious in various
aspects. We in this paper give a comprehensive review and study on classification of magic squares of
order 4. There are a lot of studies on this topic. Several classification methods were proposed such
as Anderson graph, Dudeney types, Frénicle - Amela pattern, transformation group, and so on. In
this paper we propose two new ways for classification of magic squares of order 4. One is based on
eigenvalues of the magic squares and another is to employ the theory of the majorization. The second
consideration is new. Relationships among results by the different classification methods are given.

Keywords Dudeney types, Eigenvalues of a matrix, Frénicle-quadset Magic squares, majorization
theory

1 Magic Squares and Classification

A semi-magic square is an n×n matrix of numbers in which the sum of entries along
each row and each column is a constant µ. If in addition the sum of entries along the main
diagonals is the same constant µn, then the matrix is said to be a magic square of order n
with magic sum µn. In this paper we always assume that elements in a magic square are
n2 consecutive integers, {1, 2, . . . , n2}. In this case the magic sum is µn = n(n2+1)/2. As
a result the magic sum is µ3 = 15 for n = 3; µ4 = 34 for n = 4.

It is worldwide-accepted in the realm of mathematics that the first magic square
was found by Chinese. With a history of more than 3000 years, magic squares still are
mysterious and there are a lot of open questions to be solved. For example, how many
possible different magic squares of order n are there? It has been pointed out: There
are 8 magic squares for n = 3; 7040 magic squares for n = 4; more than 275 × 106 for
n = 5. The number of magic squares of order n increases exponentially as n increases. An
upper bound of the number of magic squares of order n is given by (n2)!/(8(2n+1)!) [23].
Therefore, classification of the magic squares becomes a very important issue.

In 1693 Bernard Frénicle de Bessy (1605-1675) published his results of enumerated
7040 magic squares of order 4 and classified them into 880 categories in his paper. And
those results were confirmed by Friedrich Fitting (1862-1945) in 1931 (see [16]). Later,
Ollerenshaw and Bondi [14] gave a comprehensive study on magic squares of order 4, and
they used a different way to verify the number of magic squares of order 4 to be 7040.

For classification purpose some additional balance conditions in the literature are
required. For example, (a) a pandiagonal magic square has all the broken (or co-)diagonals

∗Corresponding author. Supported by UIC Research Grant(R201409). Email: ktfang@uic.edu.hk
†Email:yuying-luo@foxmail.com
‡Email: yxzheng90@gmail.com

Souvenir Booklet of the 24th International Workshop on Matrices and Statistics, 
25-28 May 2015, Haikou, Hainan, China. Pages 84-97. Ed. Jeffrey J. Hunter. 
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with the same magic sum; and (b) a regular or symmetric magic square of order n is a
magic square of order n satisfying mij + mn−i+1,n−j+1 = constant, i, j = 1, . . . , n, where
mij are elements of the magic squares.

Because there is a huge number of magic squares of order n, n ≥ 5. Many authors
have focused on classification of the magic squares for n = 3 and 4. The classification of
the magic squares of order 3 is simple. Table 1 list all the magic squares of order 3. Most
authors suggest that two magic squares of order n should belong to the same class (basic
form) if one square can be obtained from another square by anticlockwise rotation of π/2
and/or by reflection. Starting from M 3

1 , we can obtain M 3
2 by the anticlockwise rotation

of π/2. By the similar way we can get M 3
3 , and then M 3

4 . The square M 3
5 is the reflection

of M 3
1 , i.e., M

3
5 = (M 3

1 )
T , then by a similar rotation to M 3

5 we can obtain M 3
6 , M

3
7 , and

M 3
8 . In the literature most authors confirm that all 8 magic squares of order 3 form one

basic form. In general many authors have used the following definition:

Definition 1.

Two magic squares M1 and M2 of order n are said to belong to the same basic form if M2

can be found by using one or more time operations h1 and/or h2, where

h1(M) = MT , where MT is the reflection (transpose) ofM,

h2(M) is obtained by the anticlockwise rotation of π/2.

Table 1: Eight Magic Squares of Order 3

4 9 2 2 7 6 6 1 8 8 3 4
3 5 7 9 5 1 7 5 3 1 5 9
8 1 6 4 3 8 2 9 4 6 7 2

M 3
1 M 3

2 M 3
3 M 3

4

4 3 8 8 1 6 6 7 2 2 9 4
9 5 1 3 5 7 1 5 9 7 5 3
2 7 6 4 9 2 8 3 4 6 1 8

M 3
5 M 3

6 M 3
7 M 3

8

There are some famous magic squares of order 4. Two below, i.e., M 4
1 and M 4

2 , are
generated by Yang Hui (1127-1279), a famous Chinese mathematician in Song Dynasty.
He obtained a pair of magic squares for each n, 3 ≤ n ≤ 8 and called them as “Ying graph
and Yang graph”. Moessner in 1947 published a magic square, M 4

3 that has a lot of balance
properties. In fact, this magic square can be obtained by exchanges of rows and columns
of M 4

1 ,i.e., permuting columns of M 4
1 as (1, 2, 3, 4) ⇒ (2, 4, 1, 3) and then exchanging first

and fourth rows. Note, these operations do not appear in Definition 1.

M 4
1 =









4 9 5 16
14 7 11 2
15 6 10 3
1 12 8 13









M 4
2 =









2 16 13 3
11 5 8 10
7 9 12 6
14 4 1 15









M 4
3 =









12 13 1 8
6 3 15 10
7 2 14 11
9 16 4 5









Another famous magic square of order 4 (see M 4
4 below) appeared in Albrecht Dürer.

s Woodcut /Melancholia I0. The square M 4
5 was found in some irons in relics of Xian,
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China. Identification by the experts showed that there is a magic square of order 6 in
ancient Arabic Numbers on the irons. According to more further researches, it is believed
that this special order 6 magic square comes from its inner order 4 magic square. The last
square M 4

6 was found in the Parshvanath Jain temple in Khajuraho, India.

M 4
4 =









16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1









M 4
5 =









8 11 14 1
13 2 7 12
3 16 9 6
10 5 4 15









M 4
6 =









7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4









For magic squares of order 4 their classification is not simple. Denote all 7040 magic
squares of order 4 by M. Considering the rotation and reflection transformations on M,
there are 880 basic forms. A complete list of these 880 basic forms can refer to [14].
Obviously, the above six famous magic squares do not belong to the same basic form.

In this paper we first give a comprehensive review on various methods for classifica-
tion of 7040 magic squares of order 4. These methods can be sprit into graph visualization
(Section 2), group of transformations (Section 3), eigenvalues of a magic square (Section
4), and enumeration of the Frénicle quadsets (Section 5). Secondly, we give relationships
among different methods among which many results are new. We also apply the majoriza-
tion theory to sort all the Frénicle quads and propose an open question that there is no
magic square involved the quad (7,8,9,10). The latter is the largest guad in the sense of
majorizarion. By a computational enumeration we show that the open question is correct.
The final section gives conclusions.

2 Visualization Methods

The key characteristic of a magic square is its balance. Many earlier studies on
classification of the magic squares are based on graphical balance of a magic square. The
following graphes are proposed.

(A) Frénicle–Amela patterns : Frénicle (1931) put a magic square into a square with
16 subsquares. Consider all possible 4 neighborhood numbers add up to the magic sum
34. There are 5 kinds of pattern in Figure 1 with labels α, β, γ, δ, and ǫ. Amela (2009)
gave some suggestion on Frénicle’s consideration, see[3]. By a computation there are 48
basic forms in pattern α, 192 in β, 192 in γ, 328 in δ and 120 in ε.

(B) Dudeney patterns : Over 100 years ago Dudeney in his “Amusements in Mathe-
matics” considered to connect two numbers with sum 17(=µ/2) in a magic square of order
4. The corresponding two numbers are called as complement each other. Figure 2 shows
the total 12 patterns, denoted by I, II, . . . ,XII.

Dudeney’s classification has close relationships with many other considerations. For
example, all the magic squares in pattern I are pandiagonal magic squares; the set of
the regular magics squares of order 4 and the set of pattern III are the same. Trigg
[18] pointed out that these 12 patterns can be further grouped into 4 determinant types:
Type A includes I, II, and III patterns; patterns IV, V , and V I form type B; patterns
V II, V III, IX andX form type C; and the remaining two patternsXI andXII form type
D. He also showed that magic squares in each type can be obtained by some row/column
exchanges. For example, interchange 2nd and 3rd rows, and then interchange 2nd and 3rd
columns of a magic square in pattern II to get a magic square in pattern I; interchange
3rd and 4th rows, and then interchange 3rd and 4th columns of a magic square in pattern
III to get a magic square in pattern I.
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Figure 1: Frénicle - Amela pattern

Figure 2: 12 Dudeney patterns

Table 2 gives relationships between FrWnicle–Amela and Dudeney classifications, more
details can refer to [3]. Note that each Dudeney pattern belongs to one and only one
Frénicle - Amela pattern except pattern V I. For example, the 48 basic magic squares
which belong to FrWnicle-Amela α are all in Dudeney pattern I, magic squares in Dudeney
pattern IV are all classified into FrWnicle–Amela β, but However, the 304 magic squares in
Dudeney pattern V I are not in the same category based on FrWnicle–Amela classification.
This means that the two methods are mostly consistent, with minor inconsistency.

(C) Anderson graph : F.J. Anderson (1918) suggested the graph produced by joining
the consecutive numbers 1, 2, . . . , 16 in sequence including the line joining 16 and 1. By
visualization Anderson graphs can be grouped as two classes: symmetric and unsymmetric.
Anderson graph has been applied to many fields, but it does not involve a rich information

Table 2: Relation between FrWnicle–Amela and Dudeney classifications
Dudeney I II III IV V VI VII VIII IX X XI XII Total

FrWnicle–Amela α 48 48
β 96 96 192
γ 48 48 96 192
δ 208 56 56 8 328
ε 56 56 8 120

Total 48 48 48 96 96 304 56 56 56 56 8 8 880
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Figure 3: Distributions of Smaller Numbers of Magic Squares of order 4

for the classification purpose.

(D) Distribution of small numbers : For a given magic square of order 4, we split
the entrances into two parts, the numbers of {1, . . . , 8} are called as smaller numbers
and remaining are called larger numbers. These two sets should have a good balance
geometrically. It is obvious that for any one of the smaller numbers, there must be another
one and only one in the larger numbers, with which their sum is 17, half of the magic sum.
Xu [21] proposed a plot of the distribution of smaller numbers and find there are only 9
types, see Figure 3. According to [21], at least two smaller numbers appear in each row
and in each column, and at least one in any of diagonals while there are 4 in total in both
diagonals.

However, Xu did not give the classification details of his method. Table 3 gives
the classification of 7040. We calculate a contingency table between the smaller numbers
distribution and FrWnicle–Amela pattern as well as a contingency table between the smaller
numbers distribution and Dudeney pattern and find that there is no clear relationships.

Table 3: Classification Based on Distribution of Small Numbers

Type 1 2 3 4 5 6 7 8 9
No 192 212 212 48 48 42 42 42 42

3 Transformation Group

The above graph methods for classification only pay attention to geometric balance
of a magic square. Many authors have tried to use more algebraic tools for classification.
The group theory is one of such powerful tools.

Definition 2.

Let M be a set of all the magic squares of order 4. Consider a set of transformations, G
say, from M into itself, i.e., for each g ∈ G and M ∈ M, we have g(M) ∈ M. We call
G to be a group of transformations if it satisfies two conditions: 1) if g1 ∈ G and g2 ∈ G,
then g1g2 ∈ G, where g1g2 is defined as g1g2(M) = g1(g2(M)); 2) if g ∈ G, then g−1 ∈ G
where g−1 satisfies gg−1 = g−1g = e, with e being the identity transformation in G.
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By using the group of transformations for classification we need more concepts.

Definition 3.

Two magic square matrices M1,M2 ∈ M are say to be isomorphic under G if there exists
a g ∈ G such that M2 = gM1. We write M1 ∼ M2 (mod G).

It is easy to see that the isomorphic relation has the following properties: 1) M ∼ M
(mod G); 2) M1 ∼ M2 (mod G) implies M2 ∼ M1 (mod G); and 3) M1 ∼ M2 (mod G) and
M2 ∼ M3 (mod G) implies M1 ∼ M3 (mod G). The set {g(M)|g ∈ G} is called the orbit
of M under G. Clearly, two orbits are either identical or disjoint, and the orbits form a
partition of M.

Xu and Zhang [20] considered two groups of transformations, denoted by H and N ,
for M classification. The group H involves two basic transformations: h1 is the reflection
against the main diagonal, i.e., h1(M) = MT is the transpose of M ; and h2 is a rotation
of anticlockwise π/2. Let

P1 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.

Now h2(M) = P1M
T . Based on these two basic transformations we can define other

6 transformations: h3 = h2
2, h4 = h3

2, h5 = h1h2, h6 = h1h
2
2, h7 = h1h

3
2, and h8 = e,

the identity transformation. There are relationships h4
2 = h2

1 = e so that H is a group
transformations on M with 8 transformations in each orbit. So there are 880 = 7040/8
basic forms (orbits) in H. This conclusion is consistent with that in the literature.

The group N involves four basic transformations n1 = h1, n2 = h2, n3 is defined as:
exchanging rows 1 and 4 as well as exchanging columns 1 and 4 of a magic square and n4

is defined as exchanging rows 1 and 3, rows 2 and 4; as well as exchanging columns 1 and
3 and columns 2 and 4. Let

P2 =









0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0









, P3 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

.









It is easy to see that n3(M) = P2MP−1
2 and n4(M) = P3MP−1

3 . Based on these 4 basic
transformations one can easily obtain a group with 32 transformations on N , i.e.,

n4
2 = n2

1 = n2
3 = n2

4 = e, (1)

n1n2 = n−1
2 n1, n1n3 = n3n1, n1n4 = n4n1, (2)

n2n3 = n3n2, n2n4 = n4n2, n4n3 = n2
2n3n4. (3)

Given one magic square M ∈ M, we can obtain 31 magic squares that are isomorphic
to M . There are 220 basic forms (orbits) under N . But [20] did not give classification
relations among N and FrWnicle–Amela and Dudeney classifications. We shall study this
issue later.

Furthermore, we find some differences between the groups H and N in the sense of
eigenvalues and we propose some consideration of the classification based on eigenvalues.

4 Classification Based on Algebraic Properties

A matrix has many useful characteristic numbers, like rank, determinant, trace, eigen-
values, etc. Several authors have discussed some algebraic properties of magic squares, for
example, [1], [2], [6], [9], [10],[13], [15], [17], and [18].
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Definition 4.

Let f(M) be a function of M ∈ M. If we can find a partition of M = Mf
1∪Mf

2∪· · ·∪Mf
m,

where f(M) has the same value on each Mf
i and f(M1) 6= f(M2) for M1 ∈ Mf

i ,M2 ∈
Mf

j , i 6= j. The partition {Mf
1 ,Mf

2 , · · · ,Mf
m} gives a classification of M and we call

them as f-basic forms.

The function f can be chosen as rank, determinant, trace, eigenvalues of M ∈ M.
Trevor [17] and Trigg [18] studied determinant of magic squares. Cleve Moler (2012) posted
some results on rank of magic squares on the webpage
(http://blogs.mathworks.com/cleve/2012/11/12/magic-squares-part-3-linear-algebra/).
But his study is uncomplete.

As the determinant and rank are functions of the eigenvalues. Let us consider f(M) to
be the eigenvalues of a magic square M . There are n eigenvalues and related eigenvectors.
It is obvious that the magic sum µ is an eigenvalue and 1 = (1, . . . , 1)′ is the corresponding
eigenvector. Khan[9] proved that the µ is the largest eigenvalue in the sense of the absolute
value of an eigenvalue. Magic squares in the same f -basic form have the same eigenvalues.

However, for the eight magic squares of order 3 in Table 1, there are two sets of
eigenvalues: {15, 0 + 4.899i, 0 − 4.899i} and {15, 4.899,−4.899}, where i =

√
−1 is the

imaginary unit. Four magic squares have eigenvalues {15, 0+4.899i, 0−4.899i}, their π/2-
rotation matrices have eigenvalues {15, 4.899,−4.899}. It seems that the 8 magic squares
of order 3 should be sprit into two basic forms, not one basic form.

Therefore, the transformation h2 should be modified as a rotation of anticlockwise π
instead of π/2, denoted by this transformation by h∗

2. It is easy to find h∗
2(M) = P1MP1.

According to this modification we should define a new group of transformations, Q say,
that involves four basic transformations q1 = h1, q2 = h∗

2, q3 = n3 and q4 = n4 used in
the groups of H and N . Based on these 4 basic transformations one can obtain a group
with 16 transformations: q5 = q1q2, q6 = q1q3, q7 = q1q4, q8 = q2q3, q9 = q2q4, q10 = q3q4,
q11 = q1q2q3, q12 = q1q2q4, q13 = q1q3q4, q14 = q2q3q4, q15 = q1q2q3q4, and q16 = e. Note
that P−1

i = Pi, i = 1, 2, 3 and we can easily find the inverse of qj , j = 1, . . . , 16. So Q is a
group of transformations with 7,040/16=440 orbits (basic forms) inM. We shall show that
this new transformation group Q is consistent with the classification by the eigenvalues.

Now, let us consider classification of 7040 magic squares of order 4 based on the
eigenvalues. A criterion for magic square classification is reasonable if it is related some
kind of balance of the magic square. Can we find some balance of a magic square of order
4 related to its eigenvalues? Let M = (mij) be a magic square of order 4. Its characteristic
polynomial is

|λI −M | = c4(M)λ4 + c3(M)λ3 + c2(M)λ2 + c1(M)λ+ c0(M) =

4
∏

i=1

(λ− λi), (4)

where λ1, λ2, λ3 and λ4 are eigenvalues of M . It is easy to see the following facts, where
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ci(M)’s are in (4):

c4(M) = 1;

c3(M) = −(a11 + a22 + a33 + a44) = −µ = −
∑

i=1

λi;

c2(M) = the sum of all 2 order principal minors of M =
∑

i6=j

λiλj ;

c1(M) = −(the sum of all 3 order principal minors of M) = −
∑

1≤i<j<k≤4

λiλjλk;

c0(M) = the determinant of M =
4
∏

i=1

λi.

The above formulas show some kinds of balance of M and relationships between the eigen-
values and the coefficients of the characteristic polynomial. It is reasonable to use the
eigenvalues of M ∈ M for classification.

However, if you use the command of ’eig” in Matlab, due to the rounded rule two
different magic squares with the same eigenvalues may get different eigenvalue outputs. It
is better to directly use the coefficients of the characteristic polynomial for classification.
As c4(M) = 1, c3(M) = µ = 34 for all M ∈ M, let c(M) = (c2(M), c1(M), c0(M)) that
can be used for classification for M.

Definition 5.

Two magic squares M1,M2 ∈ M are said to belong to the same E-class if c(M1) = c(M2),
where E-class emphasizes “eigenvalue”.

It is easy to know from the coefficients of the characteristic polynomial whether there
exists zero eigenvalue or not. When c0 = 0, the function can be written as

(λ3 − 34λ2 + c2λ+ c1)λ = 0,

which means one of λ’s must be 0. Similarly, when c0 = c1 = 0, there must be two of λ’s
equal to 0; when c0 = c1 = c2 = 0, three of λ’s are 0; and when c0 = c1 = c2 = c3 = 0, all
the eigenvalues are 0. By a calculation the space M can be spitted into 140 E-basic forms
(Table 4) as follows:

(1) Group E4: there are 108 E-basic forms with 4 non-zero different eigenvalues. This
group can be further divided into two sub-groupsµE4r, where all the 4 eigenvalues are
real; and E4c, where there are 2 eigenvalues to be complex numbers. These two sub-groups
involve 34 and 74 E-basic forms, respectively.

(2) Group E3: there are 31 E-basic forms with one zero-eigenvalue and three non-zero
eigenvalues, among which 21 E-basic forms with all real eigenvalues and 10 E-basic forms
with two complex eigenvalues. Denote these two sub-groups by E3r and E3c, respectively.
Obviously, each magic square in E3 has a rank 3 and c0(M) = 0.

(3) GroupE30: there are 1E-basic forms with three zero eigenvalues and a nondiagonal
Jordan form

JF =









34 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0









.

Each magic square in this group has a rank 3.

Now we discuss relationships between a function f(M) on M and the groups H,N
and Q.
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Table 4: The number of magic squares and E-basic forms based on the eigenvalues

Category Degenerate Non-degenerate
E3 E4

E30 E3r E3c E4r E4c

Numbers of magic squares 192 3168 1760 576 1344
Numbers of E-basic forms 1 21 10 34 74

Definition 6.

A function f(M) on M is said to be consistent with group G if f(g(M)) = f(M) for each
M ∈ M and each g ∈ G; otherwise inconsistent.

Consider the following three functions related to the rank, determinant, of eigenvalues:

f1(M) = the rank of M ;

f2(M) = |M |, the determinate of M ;

fe(M) = 1, 2, 3, 4 or 5 if M ∈ E30, E3r, E3c, E4r or E4c, respectively,

we have the following theorem.

Theorem 1.

We have the following conclusions:

(1) The functions f1(M) and f2(M) are consistent with groups H and N . But the
function fe(M) is inconsistent with groups H and N .

(2) The functions f1(M), f2(M) and fe(M) are consistent with groups Q.

Proof. It is known that M and MT have the same eigenvalues. Therefore, fi(h1(M)) =
fi(M), i = 1, 2, 3. Note that the matrices P1, P2 and P3 are permutation matrices that have
the property of P−1

i = Pi, i = 1, 2, 3. As h2(M) = P1M
T , h2(M) and M have the same

rank and the same f2-value. Other six transformations in H are generated by these two
basic transformations h1 and h2, we conclude that the functions f1(M) and f2(M) are
consistent with groups H.

For the group N , as n1 = h1, n2 = h2, n3(M) = P2MP2 = P2MP−1
2 , and n4(M) =

P3MP2 = P3MP−1
3 , the functions fi(M), i = 1, 2, 3 are invariant under n1, n3, n4, but the

function f3 is not consistent under the transformation n2 as M and h2(M) = n2(M) may
have different eigenvalues. Table 4 shows many such cases. By a similar statement we
conclude the conclusion (1).

The group Q replace h2 = n2 by q2(M) = P1MP1 that does not change eigenvalues
of M . Hence we have conclusion (2).

Mattingly[13] pointed out that even order regular magic squares are singular. The
magic squares of order 4 are of even order magic squares. It is easy to find that Dudeney
pattern III of magic squares are regular and is a subset of E3r.

Now, let us see the relation of classification results between f3-basic forms and FrWnicle–
Amela Patterns (See Table 5). It can be easily seen that the magic squares with the first
three patterns α, β, γ are degenerated, while those with the last pattern ε must be non-
degenerated. Only the pattern δ have more complicated cases. It suggests that we should
look at the pattern δ deeper.

Table 6 shows relationships between f3-basic forms and Dudeney patterns. The two
classifications are consistent in a certain sense:
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Table 5: Classification relation between f3-basic forms and FrWnicle–Amela Patterns

Degenerated/Non-degenerated Degenerated Non-degenerated
Rank 3 4

No. of Zero Eigenvalues 3 1 0
Real/Complex Real Real Complex Real Complex

FrWnicle–Amela Patterns α 64 160 160 0 0
β 0 768 768 0 0
γ 128 704 704 0 0
δ 0 1536 128 288 672
ǫ 0 0 0 288 672

Table 6: Relationships between f3-basic forms and Dudeney types

Degenerated/Non-degenerated Degenerated Non-degenerated
Rank 3 4

No. of Zero Eigenvalues 3 1 0
Real/Complex Real Real Complex Real Complex

Dudeney Types I ∼ III 64 160 160 0 0
IV ∼ V 0 384 384 0 0

V I 0 1920 512 0 0
V II ∼ X 0 0 0 136 312
XI ∼ V II 0 0 0 16 48

(a) Each magic square in Dudeney patterns I, II and III are degenerated with rank
3. There are same numbers of magic squares (64,160,160) from patterns I, II and III
appear in E30, E3r and E3c, respectively.

(b) Patterns IV and V have the same frequency in E3r adn E3c. But pattern V I has
a different behavior. We should pay more attention on this pattern.

(c) All the patterns V II − XII have the full rank 4. The frequency in E4r and E4c

of Patterns V I, V II, V III are the same (136 and 312).

(d) Patters XI and XII appear the same numbers in E4r and E4c.

5 Frénicle–quadset and Majorization Theory

A magic square M of order n involves 2n + 2 n-vectors (n rows, n columns and
2 diagonal vectors) with the same sum µn. Sort these vectors in descending order and
denote the set of the n row vectors and n column vectors of M by V(M) and the set of
2n+ 2 n-vectors by V+(M). For example, the Ying square M 4

1 has

V(M 4
1 ) = {(16, 9, 5, 4), (14, 11, 7, 2), (15, 10, 6, 3), (13, 12, 8, 1),

(15, 14, 4, 1), (12, 9, 7, 6), (11, 10, 8, 5), (16, 13, 3, 2)}

and
V+(M 4

1 ) = V(M 4
1 ) ∪ {(13, 10, 7, 4), (16, 11, 6, 1)}.

In this view we propose a concept of equivalence of two magic squares.
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Definition 7.

Two magic squares M1 and M2 of order n are said to be equivalent if V+(M1) = V+(M2),
and are said to be weakly equivalent if V(M1) = V(M2).

Let Ω = {1, 2, . . . , 16} and

A4 = {(x1, x2, x3, x4) : xi ∈ Ω, x1 > x2 > x3 > x4, x1 + x2 + x3 + x4 = 34}.

Each vector in A4 is called as the Frénicle quad by [14] and the set A4 is called as the
Frénicle quadset. Obviously, when n = 4, V+(M) is a subset of A for any M ∈ M. [14]
found that there are 86 vectors in A4 and gave a comprehensive studies on these vectors.

Obviously, the concept of the weak equivalence can be applied to semi-magic squares.
For simplicity, when n = 4 we use the same notations V(M) and V+(M). It is easy to
prove that each basic transformations under H,N or Q applying to a M ∈ M does not
change V+(M). Therefore, we have the following theorem.

Theorem 2.

Any two M1,M2 ∈ M in the same orbit either under H,N or Q must be equivalent.

By an enumerative algorithm we find that there are 86 vectors in A4 list in Ta-
ble 7. These vectors are the same as [14]. Denote them by a1,a2, · · · , a86. Let a =
(a1, a2, a3, a4) ∈ A4. If some permutation of a appear in a row of some M , we say a to
appear in row; similarly we can define a appear in column and diagonal. We find the
following facts:

(a) If a appears in row of a M , it must appear in column of another magic square;
vice versa, if a appears in column of a M , it must appear in row of another magic square.
Therefore, for a given a ∈ A4 the number of magic squares where a appears in row equals
to the number of magic squares where a appears in column.

(b) If a appears in main diagonal of a M , it must appears in anti-diagonal in another
magic square. So we shall only say a appears in diagonal.

(c) There are 15 vectors in A4 each appearing in row/column, but not appearing in
diagonal; there are 34 vectors on A4 each appearing in diagonal, not in row/column. Table
8 gives details.

(d) There is only one vector, a86 = (10, 9, 8, 7), that does not appear in row/coloum,
or in diagonals.

For given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in the same dimension,
we can not sort them in general. If ai ≥ 0, bj ≥ 0, i = 1, . . . , n, i.e., a,b ∈ Rn

+ and
a1 + . . .+ an = b1 + . . .+ bn, the majorization theory proposes the way to compare these
two vectors in a certain sense. The majorization theory is an powerful tool in many fields.
A comprehensive study on the majorization theory can refer to [12]. In a magic squares all
the elements are positive and all row-, column- and diagonal-sums are the same. Perhaps
we can employ the majorization theory to study magic squares. First, let us introduce
some basic concepts in the majorization theory.

Definition 8.

For two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) with positive elements and the same
sum (

∑n

i=1 ai =
∑n

j=1 bj = µ), we say that b weakly majorizes a and write a ≺w b, if
∑n

i=k a(i) ≤ ∑n

i=k b(i), for k = 1, . . . , n, where a(1) ≥ . . . ≥ a(n) and b(1) ≥ . . . ≥ b(n)
are reordered of a and b in descending order, respectively. If there exists k such that
∑n

i=k a(i) <
∑n

i=k b(i), we say that b majorizes a and write a ≺ b.
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Table 7: 86 vectors in A4 sort by the majorization order
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

16 16 16 15 16 15 16 15 14 16 15 14 16 15 14 13 14 13 12 16 15 16 15 16 15 14 16 15 14
15 14 13 14 12 13 11 12 13 10 11 12 9 10 11 12 10 11 11 13 14 12 13 11 12 13 10 11 12
2 3 4 4 5 5 6 6 6 7 7 7 8 8 8 8 9 9 10 3 3 4 4 5 5 5 6 6 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

No 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
16 15 14 13 15 14 13 13 12 16 15 14 16 15 14 16 15 14 13 16 15 14 13 14 13 12 12 16 15
9 10 11 12 9 10 11 10 11 11 12 13 10 11 12 9 10 11 12 8 9 10 11 9 10 11 10 9 10
7 7 7 7 8 8 8 9 9 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 8 9 5 5
2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4

No 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
14 13 16 15 14 13 15 14 13 12 13 12 11 16 15 14 13 12 14 13 12 12 11 13 12 11 11 10
11 12 8 9 10 11 8 9 10 11 9 10 10 7 8 9 10 11 8 9 10 9 10 8 9 10 9 9
5 5 6 6 6 6 7 7 7 7 8 8 9 6 6 6 6 6 7 7 7 8 8 7 7 7 8 8
4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7

Table 8: The number of vectors in A that appear in row, column and/or diagonal
Appear in column or row Not appear in column or row Total

Appear in diagonal 36 34 70
Dot appear in diagonal 15 1 16
Total 51 35 86

Example 1.

Given two vectors a = (15, 2, 16, 1) and b = (9, 7, 10, 8) in A. They have the same sum and
their descending vectors are a↓ = (16, 15, 2, 1) and b↓ = (10, 9, 8, 7). We have

∑n

i=2 a(i) =
15+2+1 = 18 <

∑n

i=2 b(i) = 9+8+7 = 24,
∑n

i=3 a(i) = 2+1 = 3 <
∑n

i=3 b(i) = 8+7 = 15,
∑n

i=4 ai = 1 <
∑n

i=4 b(i) = 7. Therefore, a ≺ b.

Consider two other vectors c = (15, 14, 4, 1) and =. (16, 12, 5, 1) in A. They are in
descending form and their partial sums are

∑n

i=2 c(i) = 14 + 4 + 1 = 19 >
∑n

i=2 d(i) =
12+5+1 = 18,

∑n

i=3 c(i) = 4+1 = 5 <
∑n

i=3 d(i) = 5+1 = 6,
∑n

i=4 ci = 1 =
∑n

i=4 d(i) = 1.
These two vectors can not be ordered.

Applying the majorization order to the vectors in A we can partially sort these 86
vectors and denote them. For example, we find following relationships among a1, . . . , a9

(from left to right):









16
15
2
1









≺









16
14
3
1









≺









16
13
4
1









≺









15
14
4
1

















16
12
5
1









≺









15
13
5
1

















16
11
6
1









≺









15
12
6
1









≺









14
13
6
1









,

i.e., a1 ≺ a2 ≺ a3 ≺ a4, a5 ≺ a6, a7 ≺ a8 ≺ a9. Here, a4 and a5 as well as a6 and a7 can
not be ordered. We also find that a4 ≺ aj for j > 5 and a6 ≺ aj for j > 7. Therefore, we
can say that a4 partially majorizes a5 and denote it as a4 ≺p a5. Similarly we can write
a6 ≺p a7. As a result we have

a1 ≺ a2 ≺ a3 ≺ a4 ≺p a5 ≺ a6 ≺p a7 ≺ a8 ≺ a9. (5)

Fortunately, all the 86 vectors in A can be sorted by the majorization order or partially
majorization order. Table 9 lists ai’s according to the sort (5). This is a new result.
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Furthermore, the most majorized vector a86 = (10, 9, 8, 7) ≡ m does not appear in any
magic square of order 4. The four elements 10, 9, 8, 7 in a86 are nearest to the center point
(34/4, 34/4, 34/4, 34/4) among all vectors in A. The key characteristic of magic squares is
the balance, but the most balance vector m is not accepted by any M ∈ M. This is an
interesting fact.

6 Conclusion remark

Classification of magic squares has been studied by many authors in more than 100
years. The paper gives a comprehensive review. There are two kinds of methods for
classification: visualization methods including Anderson graph, Frénicle - Amela pattern,
Dudeney types, and small number pattern and algebraic methods including transformation
group, eigenvalues and related functions, and majorization theory. The latter is newly
proposed in this paper. We give a detailed discussion on relationships among the above
classification methods. We point out that the transformation by a rotation of anticlockwise
π/2 is not consistent with the eigenvalues consideration and propose a new transformation
group. The methods mentioned in this paper can be extended to classification of magic
square of order 5 or order 6.

We have mentioned 6 famous magic squares in section 1. The reader would be inter-
esting how about their classification results in the above methods. Table 9 presents some
partial results. We can see that all of them have rank 3 and are singular. But from the
eigenvalue point of view there are different: Yang graph, Melancholia I and Arabic square
have real eigenvalues, Ying graph and India square have a pair of complex eigenvalues,
and Moessner square has 3 zero eigenvalues. The first 4 squares in the table belong to
FrWnicle–Amila III, but the last two squares belong to different FrWnicle–Amila patterns VI
and I, respectively. Similarly, the the 4 squares belong to γ type, i.e., they are symmetric.
According to the small number method the first 4 except Moessner square belong to the
same class, but the last two belong to different classes. However, these 6 squares belong
to different basic forms under H,N and Q groups.

Table 9: Classification to six famous magic squares

Name Small Number Dudeney type FA pattern E type rank
M 4

1 Ying graph 2 III γ E3c 3
M 4

2 Yang graph 2 III γ E3r 3
M 4

3 Moessner 3 III γ E30 3
M 4

4 Melancholia I 2 III γ E3r 3
M 4

5 Arabic 5 VI δ E3r 3
M 4

6 India 1 I α E3c 3
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Conics Fitting by Least Squares
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Abstract For the least squares methodology can be distinguished two main approaches of fitting
conics (circle, ellipse, parabola, hyperbola), the algebraic and geometric fit. We focus on the best
geometric fit based on minimization of distances from the observed data points to the fitted curve
by the linear model approach with nonlinear restrictions on its parameters. Through this approach
by an iterative estimation procedure being proposed in [12] are gained locally best linear unbiased
estimates of the unknown algebraic conic parameters and also estimates of their accuracy. Subsequently,
the geometric parameters and their accuracy can be also estimated. Furthermore, simulation study
regarding the accuracy of the estimates of the geometric conics parameters are also presented.

Keywords Conics fitting; Least squares; Geometric Fit; Accuracy

1 Introduction

Fitting quadratic curves (circle, ellipse, hyperbola and parabola) to given data points
in the plane is a fundamental task in many fields like engineering, astronomy, physics,
biology, quality control, image processing, etc.

For the least squares methodology can be distinguished two main approaches of fitting
conics, the algebraic and geometric fit. The algebraic fit corresponds with the problem of
minimization squares of algebraic distances from each given point (xi, yi) to the curve
being described by the implicit equation

F (xi, yi,θ) = Ax2
i +Bxiyi + Cy2i +Dxi + Eyi + F = 0.

Thus the minimization problem in sense of the algebraic fit can be written as

n
∑

i=1

(Ax2
i +Bxiyi + Cy2i +Dxi + Eyi + F )2 → min .

This approach is computationally simple and quick, nevertheless, the estimators are biased
and not very accurate, see. e.g. [3, 11, 13, 14, 15]. Another disadvantage is that the
algebraic fitting is not invariant to the coordinate transformations.

The other least squares approach of fitting conic is the geometric fitting based on
minimization of the sum of orthogonal (geometric) distances from the observed data points
to the fitted curve, i.e. the minimization problem is

n
∑

i=1

{

(xi − x′
i)

2 + (yi − y′i)
2
}

→ min,
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where (x′
i, y

′
i) is an orthogonal projection of the given point (xi, yi) at certain geometric

feature, see e.g. [1, 6, 7, 10, 12]. The geometric fitting is invariant under translations,
rotations, and scaling.

Behind the statistical techniques for estimation of the unknown regression parameters,
which are relying on the minimization of the geometric distance belongs the orthogonal
regression, as well known as the total least squares [16], based on the maximum likelihood
methods [4, 5]. However, the minimization of orthogonal distances requires projecting
observed points onto conic what is computationally complicated. Although several efficient
algorithms have been developed, such algorithms may become numerically unstable and
time consuming [1, 2, 6].

In this paper we will focus on the geometric fit by the linear regression model with
nonlinear restrictions on its parameters.

2 Conics description

Any conic can be described by an implicit equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

where θ = (A,B,C,D,E, F )′ is a vector of conic algebraic parameters. Obviously, any non-
zero multiple of θ corresponds to the same conic. In order to obtain real non-degenerate
conic, algebraic parameters have to satisfy the inequality A2 + B2 + C2 > 0 and the
determinant ∆ of the matrix





A B/2 D/2
B/2 C E/2
D/2 E/2 F





has to be non-zero. For an ellipse, the relationship ∆(A+C) < 0 must be also satisfied. The
types of conics are classified by the discriminant (the determinant of matrix corresponding
with the quadratic part Ax2 +Bxy + Cy2):

ellipse: B2 − 4AC < 0
circle: A = C, B = 0
hyperbola: B2 − 4AC > 0
parabola: B2 − 4AC = 0

3 Conics fitting by linear model with constraints

Let us consider the problem of best geometric fit of an ellipse by the linear regression
model with nonlinear restrictions on regression parameters proposed in [12]. The restric-
tions are represented by the implicit equation of the ellipse. The statistical model can be
expressed in the form

xi = µi + εx,i, i = 1, 2, . . . , n,

yi = νi + εy,i, i = 1, 2, . . . , n,

where the unobserved points (µi, νi) stand for the errorless values of the observed points
(xi, yi) and εx,i and εy,i represent measurements errors of µi and νi, respectively. Random
errors are assumed to be independent with zero mean value and with equal variances
var(εx,i) = var(εy,i) = σ2. The errorless values (µi, νi) has to satisfy nonlinear constraints

µ2
i +Bµiνi + Cν2

i +Dµi + Eνi + F = 0, i = 1, 2, . . . , n,
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where B,C,D,E, F represent the algebraic ellipse parameters. It is assumed A = 1 in
order to obtain the unique estimates of algebraic parameters. Although this model is
highly overparametrized with (2n + 5) parameters, which are constrained by nonlinear
restrictions, and 2n observations, the model leads to efficient estimates. The model can be
written in matrix form as

(

x

y

)

=

(

µ

ν

)

+

(

εx
εy

)

, var[ε′x, ε
′
y] = σ2I2n,

where x = (x1, . . . , xn)
′
, y = (y1, . . . , yn)

′
, µ = (µ1, . . . , µn)

′
, ν = (ν1, . . . , νn)

′
, εx =

(εx,1, . . . , εx,n)
′
, εy = (εy,1, . . . , εy,n)

′
. The matrix form of nonlinear constraints is

Bθ + b = 0,

where B =

[

µν
... ν2

... µ
... ν

... 1

]

, θ = (B,C,D,E, F )
′
, and b = µ2.

In order to obtain approximate linear regression model, the nonlinear constraints are
being linearized by the first-order Taylor expansion, when the second and higher derivatives
are neglected, about µ0, ν0 and θ0

Bθ + b ≈ (B0θ0 + b0) +
∂ (Bθ + b)

∂µ′
|0 (µ− µ0)

+
∂ (Bθ + b)

∂ν ′
|0 (ν − ν0) +

∂ (Bθ + b)

∂θ′ |0 (θ − θ0)

≈ A0

(

µ△

ν△

)

+B0θ△ + c0, (1)

where

A0 =

[

Diag

([

ν0

... 0
... 1

... 0
... 0

]

θ0 + 2µ0

)

... Diag

([

µ0

... 2ν0

... 0
... 1

... 0

]

θ0

)]

,

µ△ = µ− µ0, ν△ = ν − ν0, θ△ = θ − θ0,

B0 =

[

µ0ν0

... ν2
0

... µ0

... ν0

... 1

]

,

c0 = B0θ0 + b0, θ0 = (B0, C0, D0, E0, F0)
′
, b0 = µ2

0.

The resulting model
(

x△

y△

)(

µ△

ν△

)

+

(

εx
εy

)

, var[ε′x, ε
′
y] = σ2I2n,

where x△ = x − µ0 and y△ = y − ν0, together with the restrictions (1) is known in the
statistical literature as linear regression model with type II constraints [9]. Type II con-
straints means that some of regression parameters are estimable only from the constraints,
in our case these are the algebraic ellipse parameters. The locally best linear unbiased
estimators (LBLUE) of the parameters µ△, ν△ and θ△ are





(

µ̂△

ν̂△

)

θ̂△



 = −
(

A′
0Q11,0

Q21,0

)

c0 +

(

I−A′
0Q11,0A0

−Q21,0A0

)(

x△

y△

)

,
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where the matrices Q11,0, Q12,0, Q12,0 and Q22,0 are blocks of the matrix given by the
relation

(

Q11,0 Q12,0

Q21,0 Q22,0

)

=

(

A0A
′
0 B0

B′
0 0

)−1

.

The corresponding variance-covariance matrix is

cov





(

µ̂△

ν̂△

)

θ̂△



 = σ2

(

I−A′
0Q11,0A0 −A′

0Q12,0

−Q21,0A0 −Q22,0

)

and the unbiased estimator of the residual variance σ2 is given by the expression

σ̂2 =
1

n− 5

n
∑

i=1

(

[x△,i − µ̂△,i]
2
+ [y△,i − ν̂△,i]

2
)

.

Finally, the LBLUE of µ, ν and θ are determined as

µ̂ = µ̂△ + µ0, ν̂ = ν̂△ + ν0, θ̂ = θ̂△ + θ0.

Because the estimators of µ, ν and θ depend on the approximate values, we need to
use an iterative estimation procedure. The iterative procedure guarantees that resulting
algebraic parameters estimates satisfy given nonlinear constraints, i.e. prescribed conic.
Thus it cannot happen that the resulting estimates represent different type of conic than
the required one. If the procedure converges, similarly as in [8] it can be proved that the
resulting estimates converge to the orthogonal least squares estimates, and moreover under
normality assumption to the maximum likelihood estimates.

The proposed approach for geometric fit of ellipse can be adapted for any other type of
real conics. Fitting circle is obvious since circle is a special kind of ellipse. Note that fitting
parabola requires also to estimate the algebraic parameter A, which indicates whether the
parabola is convex or concave. For parabola fitting it is necessary to choose different
assumption on algebraic parameters in order to obtain their unique estimates.

From practical point of view, geometric conic parameters estimation is also impor-
tant. Geometric parameters are more often used for conics description due to their clear
interpretation. For example, the geometric ellipse parameters are the centre, angle of ro-
tation, and the lengths of semi-axes. Let us denote the geometric conic parameters, as g,
than they can be taken as nonlinear functions of algebraic conic parameters, so the jth
geometric parameter will be given by gj = fj(A,B,C,D,E, F ) Once we have estimates
of algebraic parameters, we can plug these estimates into functions fj to obtain plug-in

estimates of geometric parameters ĝj = fj( ̂A, ̂B, ̂C, ̂D, ̂E, ̂F ). By the law of uncertainty
propagation, the estimated variance-covariance matrix of estimators ĝ is

v̂ar(ĝ) = ̂J var[( ̂A, ̂B, ̂C, ̂D, ̂E, ̂F )′] ̂J
′
, ̂J j1 =

∂fj
∂A

, . . . , ̂J j6 =
∂fj
∂F

.
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Figure 1: Fitted circle to the data from [1].

4 Examples of circle fitting

We devote to the problem of fitting a circle to six given points (1, 7), (2, 6), (5, 8),
(7, 7), (9, 5) and (3, 7), inspired by [1, 10], with intention to compare the obtained results.

As suggested in [12] the initial values were chosen as µ0 = x, ν0 = y, B0 =
(−2µ0,−2ν0,1), b0 = µ2

0 + ν2
0, and θ0 = −(B′

0B0)
−1B′

0b0. The convergence criterion
was taken as reciprocal value of the square root of six multiplied by the Euclidean norm of
differences between the estimates of µ, ν and θ from two consecutive steps. Convergence
was reached in 19 iterations, with accuracy higher than ε = 10−6. The fitted circle is dis-
played in Figure 1. Further the estimates of the circle center coordinates are (4.740, 2.984)
with standard errors 0.476 and 1.543; the estimate of the radius is 4.714 with the standard
error 1.499. For the estimate of the residual variance we get 0.409.

Compared with the estimates of geometric circle parameters from the nonlinear least
squares geometric fit as considered in [1], we found no difference; the obtained estimates of
residual variance and of geometric circle parameters are the same. Although the obtained
accuracy is a bit worse (almost twofold standard errors), the results show that the proposed
procedure by linear model with constraints gives reasonable results even for not very good
design of experiment.

For usual situation, when observed points are evenly spaced around the circle, simu-
lations show that the accuracy of estimates of both algebraic and geometric parameters is
very high. Figure 2 displays the resulting accuracy of the radius obtained from 1000 simu-
lations with the convergence criterion higher than 10−12. Simulation study was performed
for each of 10, 25, 50, 100 and 500 given points. The true standard errors of measurements
were chosen equidistantly from 0.01 to 0.1. Similar results were obtained for other circle
parameters.
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Figure 2: The average standard error of radius (n number of observed points, σ accuracy
of measurement).

5 Conclusion

Linear regression model with type II constraints has been presented as an alterna-
tive approach suitable for finding the geometric fit when conics such as circle, ellipse,
hyperbola and parabola are examined. Performed simulation study has confirmed that the
behaviour of the accuracy of the estimates of the both algebraic and geometric parameters
give very convenient results when the data noticeably fit certain curve. Hence under these
circumstances the estimates of the both algebraic and geometric parameters are immensely
accurate. Additionally, the proposed iterative procedure is quite satisfactory, even if vis-
ibly the data points do not look like fitting curve is required. Furthermore, the iterative
procedure has been compared with approach from [1] and has been found that the resulting
geometric circle (ellipse) parameters estimates as well as the residual errors are the same.
Nevertheless, the accuracy of the estimates is a bit worse.
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Bootstrap for Quasi Stationary Distributions

Guangbao Guo1,∗
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Abstract Research on quasi stationary distributions, is a very important research topic. When the
sample size is not sufficiently large, the asymptotic results of the general parameter method, may
not hold. The bootstrap method which is introduced to solve it, avoids this disadvantage. We give
the approximation form of it, and study the approximation property. Simulations are presented to
illustrate the method, using two examples, the method shows to be efficient when the small sample is
presented. At last, an application in a pure-death chain is discussed, together with some results.

Keywords Bootstrap; Quasi stationary distributions; Confidence band

1 Introduction

1.1 Motivation

Quasi stationary distribution has become an important and a powerful tool for the
statistician and economist. It provides with a modeling framework and a computationally
efficient way. The quasi stationary distribution have a varied parament λ (0 < λ ≤ 1),
which is not included in stationary distribution. It make quasi stationary distribution be
very interested. In generally, the vector of quasi stationary distribution doesn’t have a
large size. When the sample size is small, the asymptotic results of the general parameter
estimation method, may not hold. In these cases, the bootstrap method can be used to
find approximate results. Here the most important motives are risk reduction, lack of
capital and freedom of action.

The main advantage of the bootstrap is that the sampling distribution is estimated
based on the original characteristics of the data, and it can provide estimation in sittings
where mathematical solutions are not possible. Here the bootstrap method is proposed
to solve the quasi stationary distribution, due to attracting advantages both regarding to
asymptotic properties and from a practical viewpoint.

1.2 Quasi Stationary Distribution

Let {Xt, t ≥ 0} be a homogeneous ergodic Markov chain with a finite state space S, and
transition probablity matrix P = (pij), together with a transient irreducible class C ⊆ S
for which the first exit time Tt from C is almost surely finite. The problem of estimating
the transition probability P , the stationary probability π, arises in the areas of applied
probability and statistics. The application of the bootstrap method, used to approximate
the distributions of Markov chain, was considered in Basawa, et al. (1990), Kulperger
and Rao (1990), Athreya and Fuh (1992), Datta and McCormick (1992), Fuh(1993) and
Polunsky (2009).
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We consider an ergodic Markov chain with C = {s1, s2, ..., sl}. The ergodic property
implies that the existence of stationary distribution π = {π1, ..., πl} such that

πj > 0,
l∑

j=1

πj = 1, πj =
∑
i

πipij , j = 1, ..., l.

Suppose X = {x0, x1, ..., xn−1} is a realization of the process {X0, X1, ..., Xn−1}. Using
maximum likelihood method, we can estimate the parameters π′is and p′ijs as

π̂i = n−1
n−1∑
k=0

P (Xk = si),

p̂ij =

n−2∑
k=0

P (Xk = si, Xk+1 = sj)

n−1∑
k=0

P (Xk = si)

, 1 ≤ i, j ≤ l.

If nij is the number of ij transitions in {x0, x1, ..., xn−1}, ni is the number of visits to
state i in {x0, x1, ..., xn−1}. We obtain that

p̂ij =

{
nij/ni, if ni > 0;
δij , otherwise,

where δij = 1 as i 6= j; δij = 0 as i = j.

A proper probability distribution u ≡ (ui, i ∈ C) is said to be a quasi stationary
distribution (QSD) for X if the distribution of Xk, is constant over k when u is the initial
distribution, that is, for all k = 0, 1, . . . , n− 1, one has Pu(Tt > k) > 0 and

Pu(Xk = j | Tt > n) = uj , j ∈ C,

where Tt = inf{k ≥ 0 : Xk = 0} is the absorption time.

It is well known that the QSD exists and is unique whenever C is finite. In the infinite
case, it is natural to ask whether the class C may be replaced by a large but finite subset
C(n), such that the corresponding QSD approximates one on C.

Let λ = Pu(Tt > 1), we have∑
i∈C

uiPij = Pu(X1 = j) = Pu(Tt > 1)uj = λuj ,

then the statements are equivalent: for some λ > 0, u is a QSD for X . P = (Pij) is called
quasi stochastic matrix or generalized stochastic matrix.

1.3 Literature Review and Problem

The interest to bootstrap methods has largely expanded to solve some relevant prob-
lems for the dependent data. An important category of the methods is that based on
the construction of time blocks such that stationary bootstrap; blocks-of-blocks bootstrap;
regenerative block bootstrap; tapered block bootstrap. Another major family, developed
to recognize and maintain the original data dependency, is concerned with Markov chains
such that Markov chain bootstrap; sieve (Markov) bootstrap; local bootstrap (Paparoditis
and Politis, 2001). Here we consider boostrap method to solve the quasi stationary distri-
butions. Moreover, in order to implement the bootstrap, the problem is that one firstly
needs to have a good estimator of the variance.
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The remainder of the paper is organized as follows. In Section 2, we give the bootstrap
method for the QSDs in Markov chains. The approximation theory of the resampling
method for the QSDs, is described in Section 3. Section 4 presents some simulation results
to illustrate the method, with two examples of the QSDs while an application in pure-death
chain is given, together with some simulations in Section 5. Section 6 gives discussion.

2 Bootstrap Method for Quasi Stationary Distributions
When a model involves a Markov chain, it has proved useful to study the associated

family of quasi stationary distributions (QSDs), which is commonly encountered in various
scientific fields, poses great challenges to modern stochastic analysis. In this section, we
introduce bootstrap method for the QSDs.

2.1 Quasi Stationary Distributions vs Maximum Likelihood Estima-
tor

Let ni be the number of times that state i is observed; nij be the number of observed
consecutive transitions from state i to state j in X0, X1, · · · , Xn−1. Given {X0, · · · , Xn−1}
from the Markov chain with the QSDs, and λ, we can estimate ui and pij as

ûi =

n−1∑
k=0

P (Xk = si)

n
=
ni
n

; p̂ij =

n−2∑
k=0

P (Xk = si, Xk+1 = sj)

n−1∑
k=0

P (Xk = si)

=

{
nij/ni, if ni > 0;
δij , otherwise

(1)
Here δij = 1 as i 6= j; δij = 0 as i = j.

Thus, û = (û1, û2, ..., ûl) and P̂ = (p̂ij) are the parametric maximum likelihood es-
timator of u and P . It is, however, compulationally more challenging to obtain the non-
parameter asymptotic approximation estimation of QSDs.

In general the QSDs are the probability measures. Some of the interesting problems
are concerned with the search for the conditions, about the transition matrices for the
existence of the QSDs; the domains of attractions of the QSDs; the numerical evaluation
of the quasi stochastic matrices and the QSDs. The relationship, between the QSD u and
the quasi stochastic matrix P in the chain, was identified by Nair and Pollett(1993).

The properties of ûi and p̂ij have been given as well as the stationary distributions.
The asymptotic properties of ûi and p̂ij can be described as following (also see, Proposition
3.4).

Proposition 2.1 As n→∞, for fixed λ,

√
n

[
ûi − ui

]
→P N

(
0, σ̂2

ui

)
,

where σ̂2
ui

is a correlative covariance.

Proposition 2.2 As n→∞, for fixed λ,

√
n

[
p̂(i, j)− p(i, j)

]
→W N

(
0, σ̂2

pij

)
,

where σ̂2
pij

is a correlative covariance.
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2.2 Quasi Stationary Distributions vs Bootstrap Method

For small samples, the asymptotic results of the parament estimator, may not hold. In
these cases, the bootstrap method can be used to find approximate results corresponding
to those given above. By studying the theoretical property in the next section, we find
a good property of the bootstrap method in statistical inference. Thus we consider the
following bootstrap method.

The bootstrap observations (X∗0 , · · · , X∗n∗−1) can be generated, using the estimated

quasi stochastic matrix P̂ and QSD û. Here n∗ is the total number of bootstrap sample.
The distribution of X∗0 , is given by û. Further, P ∗[X∗t+1 = j|X∗t = i,X∗t−1, · · · , X∗0 ] = p̂ij ,
for all past values of (X∗t−1, · · · , X∗0 ), all t and all (i, j).

Specifically, firstly set τ0 = 0, group {X0, · · · , Xn−1} into {B1, B2, ..., Bkn}. Let τ =
(τ1, · · · , τkn), τα is the subsample number of Bα. Here Bα = (Xτα−1+1, Xτα−1+2, · · · , Xτα)
for α = 1, · · · , kn.

Secondly, generate a random variable X∗0 that assigns every ûi to si, 1 ≤ i ≤ l in B0.
For k (1 ≤ k < n∗ − 1), generate X∗k from û ≡ (ûi, i ∈ C) in {Bα, α = 1, · · · , kn}.
Let τ∗ = (τ∗1 , · · · , τ∗kn), the length of the α’th bootstrap block is τ∗α. Set τ∗0 = 0,
B∗α = (X∗τα−1+1, X

∗
τα−1+2, · · · , X∗τα) for α = 1, · · · , kn as well as Bα. Lining up the blocks

(B∗1 , ..., B
∗
kn

), we form a bootstrap sample (X∗0 , ..., X
∗
n∗−1) where n∗ =

∑kn
α=1 τ

∗
α. Here τi, τ

∗
i

are i.i.d, i.e., E(τ) = Eτi, E(τ∗) = Eτ∗i for α = 1, · · · , kn. By Propositions 3.1 and 3.4,
E(τ)/E(τ∗)→ 1 as n→∞.

g(Bα)(α = 1, ..., kn) indicate the number of visits to state j during Bα, and h(Bα)
indicate the number of ij transitions during Bα. Now, define

ûτi =
1

kn∑
α=1

τα

kn∑
α=1

g(Bα), p̂τij =
1

kn∑
α=1

g(Bα)

kn∑
α=1

h(Bα) (2)

be the estimators of u and P . For ûτi , one has the following proposition.

Proposition 2.3 As n→∞, for fixed λ, ûi → ûτi with probability 1.

The bootstrap estimators of ûτi and p̂τij can be defined as follows:

û∗i =
1

kn∑
α=1

τ∗α

kn∑
α=1

g(B∗α), p̂∗ij =
1

kn∑
α=1

g(B∗α)

kn∑
α=1

h(B∗α). (3)

g(B∗α) indicate the number of visits to state j during B∗α, and h(B∗α) indicate the number
of ij transitions during B∗α. Using Propositions 3.1 and 3.4, E(g(B))/E(g(B∗)) → 1 as
n→∞.

3 Properties of Bootstrap for the Quasi Stationary Distri-
butions
In this section, we give some properties of the bootstrap method.

3.1 Notations

The bootstrap version of Tn = tn(Xn; θ) is now defined as following,

T ∗n = tn(X∗0 , · · · , X∗n∗−1; θ̂n)
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where θ̂n is an estimator of θ based on X0, · · · , Xn−1.

Let E(X) = µ, V ar(X) = σ2, Yi =
∑
Xj(Xj ∈ Bi), Y

∗
i =

∑
X∗j (X∗j ∈ B∗i ). For

Tn =
√
n(X̄n − µ), X̄n =

∑
Xi/n(n =

∑kn
i=1 τi), we set T ∗n =

√
n∗(X̄∗n∗ − µ̂n), where X̄∗n∗

is the average of the n∗ bootstrap variables and µ̂n =
∑
ûiXi, the expectation of X∗0 . Let

kn/n→ p ≤ 1. kn is the block number of bootstrap sample, (X∗1 , ..., X
∗
n∗) is the bootstrap

sample, P ∗, E∗, V ar∗ stand for conditional P,E, V ar, τ∗i is the subsample number of the

ith bootstrap sample,
∑kn

i=1 τi =
∑kn

i=1E
∗τ∗i = E∗n∗.

3.2 Weak Convergence and Bootstrap Method

Proposition 3.1 Assume that Eτ2 < ∞, the length of the bootstrap block n∗ =∑kn
i=1 τ

∗
i , we have the ratio n∗/n→ 1(n, n∗ →∞).

Based on the above result, we will consider ûi in this paper. By a similar argument, we

use p̂ij . Setting µ̂∗n∗ =
∑
û∗iX

∗
i

(
û∗i = 1

n∗

n∑
k=1

P (X∗k = si)

)
. The bootstrap approximation

of the sampling distribution of
√
n∗(X̄∗ − µ̂n) and

√
n∗(µ̂∗n∗ − µ) are based on the i.i.d.

blocks {B∗1 , ..., B∗kn}.
Proposition 3.2 Assume that the chain {Xi}i≥0 is a Markov chain with the QSDs,

for fixed λ, Eτ2 <∞. Then the statistic

Tn =
√
n(X̄ − µ)→W N(0, σ2)

implies the statistic
T ∗n =

√
n∗(X̄∗ − µ̂n)→W N(0, σ2).

For
√
n∗(µ̂∗n∗ − µ), we have the following results.

Proposition 3.3 The chain {Xi}i≥0 is a Markov chain with the QSDs. Assume
Eτ2 <∞, for fixed λ, there is a Gaussian process Gu such that

Tn =
√
n(µ̂n − µ)→W Gu,

then
T ∗n =

√
n∗(µ̂∗n∗ − µ)→W Gu.

It is seen that the bootstrap is also asymptotic approximation in the setting. In the
view of Propositions 3.2, 3.3, as a special case, we now present our proposition as following.

Proposition 3.4 Assume that Eτ2 < ∞, for fixed λ, ui and ûi are the QSDs and
there MLEs, respectively, using bootstrap method. pij and p̂ij are the (quasi) transition
probabilities from state i to state j and the MLEs of theirs, using bootstrap method. Then

√
n

(
ûi − ui

)
→W N(0, σ̂2

ui
);
√
n

(
p̂ij − pij

)
→W N(0, σ̂2

pij
)

implies
√
n∗
(
û∗i − ui

)
→W N(0, σ̂2

ui
);
√
n∗
(
p̂∗ij − pij

)
→W N(0, σ̂2

pij
),

where σ̂2
ui

and σ̂2
pij

are correlative covariances.

In the same time, if

sup
i

√
n|ûi − ui| →W sup

i
|Gui |; sup

i

√
n|p̂ij − pij | →W sup

i
|Gpij |,

we have
sup
i

√
n|û∗i − ui| →W sup

i
|Gui |; sup

i

√
n|p̂∗ij − pij | →W sup

i
|Gpij |,

where Gui and Gpij are appropriate Gaussian processes.

Bootstrap for Quasi Stationary Distributions

109



3.3 Asymptotic Variance of Bootstrap Method

Note that as n → ∞, ûi → ui and ûτi → ûi, using Propositions 2.1-2.3. Then we
only use ûτi and its bootstrap estimator û∗i . By a similar argument, we consider p̂τij and its
bootstrap estimator p̂∗ij . We find τ , g(B) and h(B), to minimize the asymptotic variances
of û∗i − ûτi and p̂∗ij − p̂τij .

Proposition 3.5 Assume that the chain {Xi}i≥0 is a Markov chain with the QSDs,
for fixed λ, Eτ2 <∞. Then

1√
kn

(
û∗i − ûτi

)
→ AN(0, σ2

ui
);

1√
kn

(
p̂∗ij − p̂τij

)
→ AN(0, σ2

pij
),

where σ2
ui

and σ2
pij

are correlative covariances.

Proposition 3.6 Under the conditions given in Proposition 3.5. Then the condi-
tions of minσ2

ui
and minσ2

pij
are V ar(τ)Eτ = V ar(g(B))Eg(B) and V ar(g(B))Eg(B) =

V ar(h(B))Eh(B). Moreover, we have

minσ2
ui

= 2E(g(B))/E(τ)3 ·
(√

V ar(τ)V ar(g(B))− Cov(τ, g(B))

)
,

minσ2
pij

= 2E(h(B))/E(g(B))3 ·
(√

V ar((h(B))V ar(g(B))− Cov(g(B), h(B))

)
.

3.4 Estimators of the Variances about the QSDs

In Proposition 3.6, we have good estimators of the variance about ui and pij if one
chooses suitable τ , g(B) and h(B). Now we compare different approaches to estimating
σ2
ui

and σ2
pij

.

For the estimation of the variance σ2
ui

of ui in u = (u1, u2, ..., ul), set

σ̂2
uτi

=

kn∑
α=1

[τα(uαi − ûτi )]2

(
kn∑
α=1

τα)2
; σ̂2

u∗
i

=

kn∑
α=1

[τ∗α(û∗
α

i − ûτi )]2

(
kn∑
α=1

τ∗α)2
; εα = σ̂−1uτi

τα(uαi − ûτi )

(
kn∑
α=1

τα)

. (4)

where uαi = g(Bα)/τα and û∗
α

i = g(B∗α)/τ∗α.

Set λα is the number of times τα that appears in the resample τ∗. Then û∗ =
kn∑
α=1

λαû
∗α
i ,

T ∗ =
û∗i − ûi
σ̂∗

=
û∗i − ûi
σ̂

· σ̂
σ̂∗

=

( kn∑
α=1

λαεα

) kn∑
α=1

τα

kn∑
α=1

λατα

· σ̂
σ̂∗
≈

kn∑
α=1

λαεα.

Under some suitable conditions, as n→∞, T ∗ ≈ (
kn∑
α=1

λαεα) ∼ N(0, 1).

Then

E

(
σ̂2
uτi

)
→ σ2

ui
;E

(
σ̂2
u∗
i

)
→ σ2

ui
.
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For the estimation of the variance σ2
pij

of pij in quasi stochastic matrix P = (pij), set

σ̂2
pτij

=

kn∑
k=1

[τk(p̂ij − pij)]2

(
kn∑
j=1

τj)2
; σ̂2

p∗ij
=

kn∑
k=1

[τ∗k (p̂∗ij − p̂ij)]2

(
kn∑
j=1

τ∗j )2
; εj = σ̂−1ui

τj(ui − ûi)

(
kn∑
j=1

τj)

. (5)

As well as ui, we have

E

(
σ̂2
pij

)
→ σ2

pij
;E

(
σ̂∗

2

pij

)
→ σ2

pij
.

By (4) and (5), we have the asymptotic unbias estimators of the variances for ui and
pij . σ̂2

uτi
and σ̂2

pτij
are tha same as σ̂2

ui=
and σ̂2

pij
in (1). σ̂2

uτi
and σ̂2

p∗ij
are the bootstrap

variances, good estimators for the independent samples. But when we use them to estimate
ui and pij , by bootstrap-t method, a problem with this method is that our QSDs are
dependent, so it will perform very poorly. In order to avoid this, we consider percentile
method of the bootstrap in the next section.

4 Numerical simulation
Applied to the problem of estimating the QSDs, the bootstrap method consists of

computing u and P from the original chain, and then generating kn additional samples
based on ûi and (p̂ij) ( i, j = 1, 2, ..., l). The QSDs for the initial state are used. For
each of these resamples, û∗i and p̂∗ij ( i = 1, · · · , l) are computed. The empirical distri-
bution function for each element ui and pij can also be computed, based on the sample

(B∗1 , · · · , B∗kn), denoted by F̂û∗
i

and F̂p̂∗ij . Our bootstrap confidence interval is based on

the percentile method of Efron (1979). Percentile method is in some ways less intuitive
than those in the above section, but has the advantage of not requiring σ2

ui
(or σ2

pij
). By

ûi − ui ∼ N(0, σ2
ui

), the confidence interval for ui is

(−∞, ûi − σzα),

where zα is the α-level critical point of the standard normal distribution. Using Proposi-
tions 2.1-2.4, we have

ûi
∗ − ûi ∼ ûi − ui ∼ N(0, σ2

ui
). (6)

Then, ûi
∗ − σ̂u∗

i
zα = F̂−1ûi∗

(1− α). The bootstrapped percentile confidence interval of ui is

(−∞, F̂−1ûi∗
(1− α)).

In same time, the percentile confidence interval of pij is (−∞, F̂−1p̂∗ij
(1− α)).

A (1−α)100 percent confidence band, for the elements ui and pij , are given by Bû∗
i
(α)

and Bp̂∗ij (α). Here,

Bû∗
i
(α) = {(x, y) : F̂û∗

i
(x) ≤ α, F̂û∗

i
(x) ≥ (1− α)},

Bp̂∗ij (α) = {(x, y) : F̂p̂∗ij (x) ≤ α, F̂p̂∗ij (x) ≥ (1− α)}.

Let

(F̂−1û∗
i

(α), F̂−1û∗
i

(1− α)) = {(x, y) ∈ Bû∗
i
(α) : min |y − x|},

(F̂−1p̂∗ij
(α), F̂−1p̂∗ij

(1− α)) = {(x, y) ∈ Bp̂∗ij (α) : min |y − x|},
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we have the bootstrap simultaneous confidence interval of ui and pij .

There are two simulation examples under proposed bootstrap method about the prob-
lem in this section. In these simulation studies, we consider two five-state Markov chain
with quasi stochastic matrix and generalized stochastic matrix, respectively. Note that
uP = λu, then P TuT = λuT . Let the matrix P = BT . Here we do not consider the sum
of u is contained.

First, we give an example of Markov chains with the QSDs. Set the QSD uI =
1/
√

5 · (1, 1, 1, 1, 1), λ = 3
4

and

BI =


3
4

0 0 0 0
3
8

3
8

0 0 0
1
4

1
4

1
4

0 0
3
16

3
16

3
16

3
16

0
3
20

3
20

3
20

3
20

3
20

 ,

where BI is called column quasi stochastic matrix.

We present another example of Markov chains with the QSDs. Set the QSD uII =
1/
√

7/2 · (1, 1, 1, 1
2
, 1
2
), λ = 1 and

BII =


1 0 0 0 0
1
2

1
2

0 0 0
1
3

1
3

1
3

0 0
1
8

1
8

1
8

1
4

0
1
10

1
10

1
10

1
5

1
5

 ,

where B2 is called column generalized stochastic matrix.

For these small sample studies, two different sample sizes n = 100, 200 are included.
The size of the bootstrap samples is the same as the original coverage probabilities, based
on 1000 replications trials. The results are presented in Tables 1 and 2.

The data were generated by these Markov chains (the original sample size, fixed as
n = 300). Computation was performed, using R software. Using the bootstrap method in
quantile estimation, we simulate perctent confidence intervals, along with their coverage
probabilities for B and u. In each situation, 500 bootstrap replications were run.

95 percent confidence intervals, their average length, coverage probability and others
of (BI , uI) and (BII , uII), are shown in Tables 1 and 2.

Now with small samples, we consider bootstrap method to solve it, to obtain the
large samples. If we use bootstrap method, it will be wonderfully worked out. It is that
bootstrap method can pose large sample when there are small samples.

Table 1: Comparison of the approximate confidence intervals for BI , and u1 of uI
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0.95 CI AC CP 0.95 CIu 0.975 CIu 0.99 CIu

n = 100

B11 (0.381, 1.370) 0.989 0.959 1.196 1.359 1.502
B22 (0.202, 0.653) 0.451 0.967 0.615 0.640 0.785
B33 (0.097, 0.385) 0.288 0.964 0.368 0.382 0.395
B44 (0.0573, 0.2631) 0.2058 0.957 0.2574 0.2602 0.2753
B55 (0.0357, 0.2387) 0.203 0.971 0.2334 0.2375 0.2497
u1 (0.3385, 0.7325) 0.394 0.962 0.706 0.7473 0.7607

n = 200

B11 (0.437, 1.258) 0.821 0.956 1.185 1.254 1.483
B22 (0.257, 0.565) 0.308 0.963 0.548 0.563 0.701
B33 (0.113, 0.349) 0.236 0.962 0.338 0.346 0.389
B44 (0.0784, 0.2543) 0.1759 0.955 0.2491 0.2538 0.2703
B55 (0.0679, 0.2346) 0.1667 0.968 0.2315 0.2341 0.2485
u1 (0.3591, 0.6829) 0.3238 0.958 0.678 0.7136 0.7535

CI: Confidence Interval; CIu: upper end point of one-sided Confidence Interval;
CP: Coverage Probability; AL: Average Length; diag{B1} = {B11, B22, B33, B44, B55}

Table 2: Comparison of the approximate confidence intervals for B2, and u1 of uII
0.95 CI AC CP 0.95 CIu 0.975 CIu 0.99 CIu

n = 100

B11 (0.432, 1.378) 0.946 0.960 1.340 1.374 1.505
B22 (0.379, 0.729) 0.35 0.971 0.674 0.723 0.836
B33 (0.212, 0.476) 0.264 0.967 0.463 0.474 0.623
B44 (0.173, 0.3739) 0.2009 0.963 0.3630 0.3721 0.3915
B55 (0.1458, 0.3018) 0.156 0.972 0.3011 0.3017 0.3121
u1 (0.2676, 0.821) 0.5534 0.9654 0.8076 0.8364 0.8571

n = 200

B11 (0.457, 1.369) 0.912 0.953 1.39 1.364 1.473
B22 (0.423, 0.698) 0.275 0.964 0.673 0.692 0.754
B33 (0.273, 0.435) 0.162 0.961 0.429 0.432 0.558
B44 (0.1731, 0.3739) 0.2008 0.957 0.3657 0.3735 0.3891
B55 (0.1689, 0.2846) 0.1157 0.967 0.2803 0.2833 0.3087
u1 (0.2728, 0.8089) 0.5361 0.9578 0.8011 0.8214 0.8483

CI: Confidence Interval; CIu: upper end point of one-sided Confidence Interval;
CP: Coverage Probability; AL: Average Length; diag{B2} = {B11, B22, B33, B44, B55}

Although it is impossible to know the true confidence interval for most problems,
bootstrap is asymptotically more accurate than the standard intervals. Simplicity is the
attraction of this method, and explains its continued popularity. Unlike the bootstrap-t,
it does not require estimating the related variances. Further, no invalid parameter values
can be included in the interval. Another advantage of this group over the pivotal methods
is that they are transformation respecting.

5 Application
A pure-death chain is with killing on C = {1, 2, ..., s} with death probability qi and

killing probability ki in state i, and coffin state 0. The probability of death from state
1 is k1, r1 = 1 − k1 is the probability of remaining in state 1, 0 ≤ ki ≤ 1, 0 < qi < 1.
Due to the complexity of the above QSDs in the progress (in general, the rate matrix is
a three-diagonal matrix), we specialize the matrix, the model fits with a quasi stochastic
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matrix (or a negative rate matrix)

B3 = P T =


r1 0 0 · · · 0
q2 r2 0 · · · 0
...

...
. . .

...
...

0 · · · · · · rs−1 0
0 · · · · · · qs rs


T

.

(also see, Doorn and Pollett, 2009).

A special example in pure-death chains is as following,

B3 = P T =


1/2 0 0 0 0
−1/3 1/3 0 0 0

0 −1/4 1/4 0 0
0 0 −1/5 1/5 0
0 0 0 −1/6 1/6


T

.

Here s = 5, uP = (u1, u2, ..., u5), set λ = 1/6 and u1 = 1, we have the QSD uP =
(1, 1, 2/3, 5/18, 1/18). Now we give some simulations of the QSD uP as well as those
above, we have some comparison results in Table 3.

Table 3: Comparison of the approximate confidence intervals for uP
0.95 CI AC CP 0.95 CIu 0.975 CIu 0.99 CIu

n = 100

u1 (0.713, 1.323) 0.61 0.954 1.278 1.320 1.457
u2 (0.693, 1.316) 0.621 0.958 1.269 1.309 1.446
u3 (0.401, 0.875) 0.474 0.963 0.867 0.871 0.912
u4 (0.131, 0.413) 0.282 0.957 0.404 0.411 0.435
u5 (0.0021, 0.0079) 0.0058 0.960 0.0071 0.0077 0.0089

n = 200

u1 (0.643, 1.220) 0.577 0.963 1.209 1.216 1.437
u2 (0.635, 1.201) 0.566 0.962 1.105 1.196 1.417
u3 (0.432, 0.884) 0.452 0.964 0.867 0.879 0.915
u4 (0.125, 0.405) 0.28 0.963 0.397 0.401 0.427
u5 (0.0018, 0.0076) 0.0058 0.961 0.0069 0.0074 0.0085

CI: Confidence Interval; CIu: upper end point of one-sided Confidence Interval;
CP: Coverage Probability; AL: Average Length; uP = (1, 1, 2/3, 5/18, 1/18).

6 Discussion
The QSD u and the stationary distribution π have some common characteristics in

Markov chain, for example, all vector and not more than one. The different aspect is
that the QSD have a λ-invariant measure (0 < λ ≤ 1), i.e., the max eigenvalue of quasi
stochastic matrix may be not one, but less than one. In our simulations and examples,
we don’t contain the sum of u to equal one. Our QSDs are different with the QSDs in
continuous-time finite Markov chains. Here we only vary the boundary of π, in order to
apply it.

This paper presents a bootstrap method for computing ML estimate of quasi station-
ary distribution from Markov chain. It was demonstrated that the use of the bootstrap
method can improve the performance of ML of certain parameters of the Markov chain, in
the same time, avoids its shortcomings of parameter solution, and shows the good nature.
An empirical study suggested under what conditions the methods were reliable. A key idea
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of the methods presented in this paper are building a large sample setting, though further
study may be required to perform reasonably in a variety of situations. The methods
proposed here can be easily extended to include any other parameter of a Markov chain
by changing the function of the appropriate calculations.

It is the disadvantage that the bootstrap method may not perform well, when the
matrix P̂ may not have a structure that is close to that of P .
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Antieigenvalue Analysis, New Applications:
Continuum Mechanics, Economics, Number Theory

Karl Gustafson1,∗

1 University of Colorado at Boulder, USA

Abstract My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenval-
ues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis,
Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of
application: Continuum Mechanics, Economics, and Number Theory.

1 Introduction
Antieigenvalue analysis [1] is an operator trigonometry concerned with those vectors, called

antieigenvectors, which are most-turned by a matrix or a linear operator A. This is in contrast to
the conventional eigenvalue analysis, which is concerned with those vectors, called eigenvectors,
which are not turned at all by A. Antieigenvalue theory may be usefully thought of as a varia-
tional theory, extending the variational Rayleigh-Ritz theory which characterizes eigenvectors, to
an enlarged theory also characterizing antieigenvectors.

Two key entities in the antieigenvalue theory are the first antieigenvalue

µ1 = cosφ(A) = min
x 6=0

< Ax,x >

‖ Ax ‖‖ x ‖ (1)

and the related convex minimum

ν1 = sinφ(A) = min
ε>0

‖ εA− I ‖ . (2)

Here I will specialize the antieigenvalue theory to A, an n×n symmetric positive definite matrix.
One generally has the fundamental relation

cos2 φ(A)+ sin2 φ(A) = 1. (3)

There are two maximally turned first antieigenvectors

x± =
(

λn

λ1 +λn

) 1
2

x1±
(

λ1

λ1 +λn

) 1
2

xn (4)

where 0 < λ1 5 λ2 5 . . . 5 λn are the eigenvalues of A, and where x1 is any norm-one eigen-
vector from the λ1-eigenspace and xn is any norm-one eigenvector from the λn-eigenspace. The
antieigenvectors x± in (4) have also been normalized to be of norm-one. For n× n symmetric
positive definite A the expressions in (1) and (2) have useful explicit valuations as

µ1 =
2
√

λ1λn

λ1 +λn
, ν1 =

λn−λ1

λn−λ1
. (5)
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For further elaboration of the general antieigenvalue theory I refer to [1]. In particular, just
as one may move up the successive eigenvalue ladder via the Rayleigh-Ritz variational quotient
minimizations, one can analogously move up an antieigenvalue ladder µ2,µ3, ... via the variational
quotient minimizations of (1), thereby arriving at a decreasing sequence of critical turning angles
φk(A). But we won’t need those higher antieigenvalues in the discussions of this paper.

In Sections 2, 3 and 4, respectively, I will briefly summarize three new applications of the
antieigenvalue analysis. A full development of each will appear in the three forthcoming papers
([2],[3],[4]), respectively.

I would like to express my thanks to Jeff Hunter and Simo Puntanen as chairs of the IWMS-
2015 for inviting me and to ILAS for designating me as their lecturer for the conference.

2 Continuum Mechanics(Granular Materials)
The following extracts a main result from the forthcoming paper [2]. My investigations there

lean heavily on the recent paper [5] which I would urge the reader to consult for further background
on the modeling of granular materials. In [2] I also go further to make connections to sandpile
theories which have been useful to model self-organizing criticality in Statistical Mechanics [6].

The paper [5] explores the notion of (maximum) angle of repose for granular materials. On
the other hand, my theory of antieigenvalues [1] has as one of its essential ingredients the notion
of (maximum) operator turning angle. Here is how to connect the two theories.

Following [5], the equilibrium equations for a granular pile of local slope θ are

∂xσxx + ∂zσxz = ρgsinθ
∂xσxx + ∂zσxz = ρgcosθ . (6)

The stress tensor Σ can be written in singular value decomposition

Σ =
[

σxx σxz

σxz σzz

]
=

[
cosψ −sinψ
sinψ cosψ

][
σ1 0
0 σ2

][
cosψ sinψ
−sinψ cosψ

]
(7)

where σ1 = σ2 > 0 are the principal stresses and where ψ gives the principal directions.
By considering a plane within the material and the normal and tangential stresses upon it in terms
of the coefficient of friction of the material and a corresponding angle δ of internal friction, it is
deduced in [5] that the largest sustainable angle of repose θ is given by

sinθ =
τ
σ

,where σ =
σ1 +σ2

2
,τ =

σ1−σ2

2
. (8)

Some assumptions in this modeling of the discrete by the continuous have of course been made.
Among those are a linear dependence on the vertical z direction and a stress-free condition at the
pile’s surface at z = 0.

In [2] I am able to see and recast this continuum mechanical model for stable granular material
piles into my antieigenvalue theory. The key is to remember that the unique ε for which the
minimum in (2) is attained in known [1] to be εm = 2

σ1+σ2
for a 2× 2 matrix with singular values

σ1 and σ2. Then straightforward calculations confirm that

sinφ(Σ) = ‖εmΣ− I‖=
τ
σ

. (9)

Theorem ([2], Thm 3.1). The (maximum) angle of repose θ , the material angle of friction δ , and
the (maximum) turning angle φ(Σ) of the stress tensor, are the same.
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3 Economics (Capital Asset Pricing Model)
The following extracts from the forthcoming paper [3]. I presented a preliminary version at

the IWMS2013 conference in Toronto. The paper [7] ensuing from that conference was accepted
and may be accessed online although it is not in print yet at this writing. It contains a rather
complete articulation, in order, of randomness, risk, and reward in financial markets, along with
a number of important bibliographical references. I refer you here to the excellent book [8] for
aspects of the CAPM as it is used in portfolio design theory and in high frequency trading, topics
I have followed now for a considerable number of years.

The main finding which I exposed at the IWMS2013 and in the paper [7] and a bit earlier in
the book [[1], p.182] is that the Sharpe Ratio, which is a key tool used in the CAPM theory and
more importantly in practice, can be related to my first antieigenvalue µ1. I first observed this in
1994 when I entered the financial engineering mathematical world during a very small consulting
task, but did not work out the details until [7]. Here, in brief, is how that relationship may be seen.

The Capital Asset Pricing model assumes the Efficient Market Hypothesis and then tells you
to measure the return-to-risk of your portfolio against the market. From the assumption that the
full market has optimized the return-to-risk, your Sharpe ratio

S =
E[r]
σ [r]

, (10)

where E[r] is the average return over a number of periods and σ [r] is the corresponding standard
deviation, will not be greater than that of the whole (e.g, think indexing) market’s Sharpe ratio.
See especially [[8], fig 5.2, p 55], to picture Sharpe ratios as mean-variance slopes. Here I am just
dropping the risk-free return rate R f from numerators, as it is effectively zero these days anyway.

Suppose now we look at the last two years of annualized returns r1 and r2. We may form the
usual (arithmetic) Sharpe ratio SAM = r1+r2

2σ and also a (geometric) Sharpe ratio SGM =
√

r1r2

σ and
upon dividing the latter by the former we arrive at

G =
SGM

SAM
=

2
√

r1r2

r1 + r2
(11)

which is my first antieigenvalue µ1 as seen from (5). Further details and refinements may be found
in [3, 7]. There I also begin an accompanying treatment of geometric versus arithmetic portfolio
design. A referee of [7] also suggested possible connections to the currently important financial
economic issues concerning realized volatilities, and I am in the process of such investigations in
the paper under preparation [3].

4 Number Theory (Pythagorean Triples)
Here is a very interesting and new explicit connection of my antieigenvalue Theory and its

operator trigonometry, to number theory. More details will be given in a paper under preparation
[4], where a number of important further ramifications will also be developed.

Let me first point out and emphasize that when I first originated the antieigenvalue theory
almost fifty years ago, I was coming from semi-group perturbation theory which had led me to
a question of when an operator product BA would remain (real) positive, given positive A under
multiplicative perturbation by positive B. For rather general semi-group generators A, and bounded
B, I found the operator theoretic sufficient condition

sinφ(B) 5 cosφ(A). (12)

Then by using variational techniques on the expression (1) in conjunction with convexity tech-
niques on the expression (2) I found the explicit valuations (5) for n×n symmetric positive definite
matrices. See [1] for more details and history.
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Now the new connection to Number Theory, which I only recently discovered. Given two
arbitrary relatively prime positive integers m and n, with m > n, one of them being even, the other
odd, then the numbers

a = 2mn, b = m2−n2, c = m2 +n2 (13)

form a primitive Pythagorean triple:
a2 +b2 = c2. (14)

This sufficient condition is also necessary. For more details see [9]. This construction and charac-
terization of Pythagorean triples is often called Euclid’s Formula.

I may now form the matrix (and its similarity class of matrices with the same eigenvalues m2

and n2)

A =
[

n2 0
0 m2

]
. (15)

Immediately from my matrix operator trigonometry [1] and the expressions (5) we have

cosφ(A) =
2mn

m2 +n2 , sinφ(A) =
m2−n2

m2 +n2 . (16)

Proposition ([4]). Euclid’s Formula for Pythagorean Triples is a special case of my operator
trigonometry.

We may propose to call these matrices Am,n, Pythagorean Triple Matrices. Their maximum
turning angles may be called special Pythagorean turning angles φm,n(A). Their corresponding
normalized Pythagorean antieigenvectors are

x± =
(

m2

m2 +n2

) 1
2
[

1
0

]
±

(
n2

m2 +n2

) 1
2
[

0
1

]
=

1√
m2 +n2

[
m
±n

]
. (17)

We know of course there are an infinite number of these Pythagorean angles, which are now em-
bedded within my antieigenvalue operator trigonometry.

This new connection of my antieigenvalue analysis to the Pythagorean triple number theory
may be seen to have other interesting manifestations. Here is another one, couched in the termi-
nology of algebraic geometry. Let x =

(
m
n ,0

)
be a point on the x-axis. It’s stereographic projection

onto the unit circle becomes, now seen operator-theoretically, the point

P =
(

2mn
m2 +n2 ,

m2−n2

m2 +n2

)
= (cosφ(Am,n), sinφ(Am,n)) . (18)

The stereographic point of view comes from a treatment of spinors and twistors [10].
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Comparison of facial recognition methods
based on extension methods of Principal

Component Analysis

Guanyu Hu1

1Florida State University

Abstract The human face recognition system becomes more and more universal in different parts
of our society like governments, banks and social welfare. How to improve the efficiency of the dis-
crimination of human face is the most significant issue in the human face recognition system. And
it is also a hot issue in the high dimensional analysis.In this paper, we compared the performance of
the facial recognition of three methods, EMPCA, Sparse PCA and Kernel PCA. These three methods
based on the general idea of Principal Component Analysis and Fisher’s Linear Discriminant. Our
study based on the ORL face data base. EMPCA used same idea of the classic PCA by using the
EM algorithm. The Sparse PCA extends the classic PCA by adding sparsity constraint in order to
explain the variables more clear. The Kernel PCA extends the classic PCA by using kernel methods.
The comparison of these three methods in facial recognition can help us know much more about the
applications of the dimension reduction methods.

Keywords Facial Recognition; Principal Component Analysis; EM algorithm; Sparse PCA; Kernel
PCA; Dimension Reduction

1 Introduction
The human face recognition has brought great attention to the temporary society for

both commercial and research, especially when it’s application can be practically adopted
in different areas, like human identifications, computer visions and criminal forensics.
There are many different algorithms of the human face recognition system like Feature-
based recognition algorithms, Appearance-based recognition algorithms, Template-based
recognition algorithms and Recognition algorithms using neural network. It’s difficult to
develop a computational model of face recognition, because the human faces are complex,
multidimensional, and meaningful visual stimuli. It’s a big challenge to find a proper model
which can discriminate human faces efficiently.
In this paper, I used most common method in face recognition, principal component anal-
ysis (PCA). The algorithm of face recognition by PCA was first introduced by Matthew
Turk and Alex on 1991. They first introduced the concept of the Eigenfaces and trans-
formed the high-dimension data sets into the low-dimension. Because the most difficult
part of the face recognition is to deal with the high-dimension data. Principal Component
Analysis provides us a possible way to solve this topic. However, Principal Component
Analysis has some drawbacks in the dimension reduction problem, I will discuss in the
section 2. In order to improve the method in the face recognition, I introduced some
extension methods from Principal Component Analysis, like EM PCA, Sparse PCA and
Kernel PCA. These three methods based on the core idea of Principal Component Analy-
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sis, data transformation. In the following part, I will give a brief introduction about these
three methods and their application in the face recognition.

2 Methodology
In this section, I will introduce my methodology for the face recognition problem. In

general, I use two step to accomplish the face recognition. Step one is feature extraction.
And the step two is classification. What I concentrate is the method of the feature extrac-
tion. So in the following parts I will introduce what I used in the face recognition. In the
step two, I do the classification in three steps.
(a)Form feature vector: Compute the projection of the test image.
(b)Compute Metric: Compute the distant between the projection and each images using
the 2-norm.
(c)Find Nearest Neighbors: Find the label of the images that has the smallest distance
to the projection.
So, the following four parts will give a brief view of the methods I used in the feature
extraction.

2.1 Principal Component Analysis

Principal component analysis (PCA) is a very traditional method which can be ap-
plied into feature extraction and data representation. The goal of PCA is to find a linear
and low-dimensional subspace of the original feature space which is high dimensional. The
algorithm of the PCA according to the covariance matrix is following:
According to the algorithm above, I can extract the feature from my training data.

Algorithm 1 Principal Component Analysis

1: Compute the covariance matrix of the data
2: Compute the eigenvectors and eigenvalues of the covariance matrix
3: Rearrange the eigenvectors and eigenvalues
4: Compute the cumulative energy content for each eigenvector
5: Select a subset of the eigenvectors as basis vectors
6: Convert the source data to z-scores
7: Project the z-scores of the data onto the new basis

But the PCA has some disadvantages of the feature extraction:
1) It’s difficult to calculate the covariance matrix in an accurate manner.
2) If the training doesn’t provide some information, PCA cannot capture even the simplest
invariance.
3) It’s difficult to give a brief explanation of the each components.

2.2 EM PCA

EM algorithm was introduced by Arthur Dempster, Nan Laird, and Donald Rubin in
1977. They proposed an iterative method to find the maximum likelihood or maximum a
posteriori (MAP) estimates of parameters in statistical models. There are two steps in the
EM algorithm. E-step is to find the expectation of the log-likelihood using the existence
estimate of the parameters. M-step is to compute the parameters maximizing the expected
log-likelihood. The algorithm of EM Algorithm is following:

Guanyu Hu

122



Algorithm 2 EM Algorithm

1: Expectation Step: Compute:

Q(θ | θk, xo) = E[logf(xo, xm | θ) | θk, xo]

2: Maximization Step: Set
θk+1 = arg max

θ
Q(θ|θk, xo)

3: Check the convergence. If not, set k = k+1 and go to the first step.(xo is the observed
data, xm is the missing data.)

Applying EM algorithm into PCA gives us three advantages: 1) Traditional PCA has
trouble with high dimensional data or large numbers of datapoints. When n and p are
large, there are so many difficulties in the form of the computational complexity and data
scarcity. In some degree, the EM algorithm can easy the computational complexity.
2) Traditional PCA cannot deal with the problem which has the missing data. The EM
algorithm for PCA can estimate the maximum likelihood values in the missing data con-
dition.
3) Traditional PCA does not define the data’s probability density. In this way, we have
limited criterion to evaluate the fitness of the model. However EM PCA can solve this
kind of problem.
So, the algorithm of the EM PCA(1998,Sam Roweis) is following:

Algorithm 3 EM PCA Algorithm

1: Expectation Step:
X = (CTC)−1CTY

2: Maximization Step:
Cnew = Y XT (XXT )−1

where Y is a p×n matrix of all the observed data and X is a k×n matrix of the unknown
states. The columns of C will span the space of the first k principal components.

2.3 Sparse PCA

Sparse Principal Component Analysis(SPCA) was introduced by Dr. Zou, Dr Hastie
and Dr.Tibshirani in 2006. Compared with the classic principal component analysis which
is a linear combination of all the original variables, sparse principal component analy-
sis(SPCA) uses the lasso(elastic net) to produce modified principal components with the
sparse loadings. Sparse loadings can be obtained by estimating in the regression model with
the lasso(elastic net) constraint. SPCA has some advantages in doing high-dimensional
data reducing. Because, PCA has an obvious drawback. In the classic PCA, each principal
component is just a linear combination of all the variables of the observed data. In this
way, it’s difficult for us to interpret the principal components. SPCA not only solves the
problem of dimensionality reduction, but also reduces the number of explicitly of the used
variables by using the lasso. SPCA is built on the general fact of the PCA which trans-
formed into a optimization problem of the regression model with the quadratic penalty and
lasso penalty. In order to get deep understanding of SPCA, I will introduce the general
idea of lasso first.
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LASSO: A linear regression model has n observations and p predictors. The LASSO
estimators is following:

β̂lasso = arg max
β
||Y −

p∑
j=1

Xjβj ||2 + λ

p∑
j=1

|βj |

In this formula, Y = (y1, ..., yn)T is the response vector, X = [X1, .., Xp], where Xj =
(x1j , ..., xnj)

T , λ is non-negative. In 1996, Dr.Tibshirani gave a solution to this estimator.
According to the general idea of LASSO. Dr.Zou proposed the general method of SPCA
which transforms the traditional method into the optimization problem. The algorithm of
SPCA(2006,H.Zou) is following:

Algorithm 4 SPCA Algorithm

1: Let A start at V [, 1 : k], the loadings of first k ordinary principal components
2: Given a fixed A = [α1, ..., αk], solve the following elastic net problem for j = 1, 2, ..., k

βj = arg min
β

(αj − β)TXTX(αj − β) + λ||β||2 + λ1,j ||β||1

3: For a fixed B = [β1, .., βk], compute the SVD of XTXB = UDV T , then update
A = UV T

4: Repeat Steps 2-3, until convergence
5: Normalization: V̂j = βj

||βj || , j = 1, .., p

2.4 Kernel PCA

Dr.Schölkopf introduced the Kernel method in PCA in 1999. The kernel method using
in the PCA extends the originally linear operations of PCA into kernel Hilbert space with
a non-linear mapping.
First, the Kernel method must transform the data into the nonlinear mapping φ(x), and
assume the projected new features have zero mean:

1

N

N∑
i=1

φ(xi) = 0

And then, calculate the covariance matrix of the projected feature:

C =
1

N

N∑
i=1

φ(xi)φ(xi)
T

According to the covariance matrix, we can get the eigenvalues and eigenvectors:

Cvk = λkvk

Get the representation of vk:

1

N

N∑
i=1

φ(xi)φ(xi)T

N∑
j=1

akjφ(xj) = λk

N∑
i=1

akiφ(xi)
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And we define the kernel function like:

k(xi, xj) = φ(xi)
Tφ(xj)

Use the matrix notation and kernel function

K2ak = λkNKak

where Ki,j = k(xi, xj),ak is [ak1, ...akN ]. ak can be solved by

Kak = λkNak

Finally we can get the kernel principal components

yk(x) = φ(x)Tvk =
N∑
i=1

akik(xi,x)

If the mean of the projected datasets is not zero, we can use the Gam matrix

K̃ = K − 1NK − k1N + 1NK1N

where 1N is the N ×N matrix and all the elements equal 1/N .(Bishop, 2006)
So we can get the algorithm of the kernel PCA(Q. Wang, 2011)

Algorithm 5 kernel PCA Algorithm

1: Construct the kernel matrix from the training data
2: Compute the Gam matrix K̃
3: Solve the vectors ai (substitute K with K̃)
4: Compute the kernel principal components

3 Face Recognition Results
In this section, I will give the results of the simulation study. In the simulation, I used

ORL database. In this database, each face’s size is 64 × 64. Totally, I separate data into
two sets. One is training data, the other is test data. Both two data have 40 people, each
people has 5 different faces.To compute an average performance, I performed the above
procedure in section 3 1000 times and computed the percentage of successful recognition.
In addition to compare the speed of each algorithm, I computed the time of method in the
feature extraction step. The following two figures show the results:
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4 Conclusion
In the results from the section 3, we can find that expect kernel PCA, classic PCA,

Sparse PCA and EM PCA have same recognition rate for this database. But in the feature
extraction time, there is difference between the three methods. Classic PCA algorithm will
calculate the covariance matrix every time, so the time of extraction have significance dif-
ference in different numbers of the component. But the EM algorithm will have advantages
in the low numbers of the components due to its calculation method. Sparse PCA also
has this advantages. So in the problem which need low numbers of component, EM algo-
rithm is preferred. Kernel PCA in this classification has lower accuracy than other three
methods. At same time, as Kernel PCA will do some projection to other space, its time is
much bigger than other three methods.

5 Future Work
In this paper, I only use the Nearest Neighbors in the procedure of classification.

There are no significant differences between the sparse PCA and classic PCA. So in the
future work, I need to do other research in the comparison of the classification method’s
effects on the feature extraction methods.
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Abstract   Based upon the Grassman, Taksar and Heyman (1985) algorithm and the equivalent 
Sheskin (1985) State Reduction algorithm for finding the stationary distribution of a finite 
irreducible Markov chain, Kohlas (1986) developed a procedure for finding the mean first passage 
times (MFPTs) (or absorption probabilities) in Markov renewal processes. The method is 
numerically stable as it doesn't involve subtraction. It works well for focusing on the MFPTs from 
any state to a fixed state but it is not ideally suited for a global expression for the MFPT matrix. 
We present some refinements to the Kohlas algorithm that we specialize to the case of Markov 
chains. We utilise MatLab to find expressions for the MFPT matrix. A consequence of our 
procedure is that the stationary distribution does not need to be derived in advance but is found 
from the MFPTs. This also leads to an expression for the group inverse of I – P where P is the 
transition matrix of the embedded Markov chain. Some comparisons, using some test problems 
from the literature, with other techniques using generalized matrix inverses and perturbation 
techniques are also presented. 
 
Keywords   Markov chain, Markov renewal process, stationary distribution, mean first passage 
times, generalized inverse, group inverse, perturbations. 
 
1    Introduction 
Let P = [pij] be the transition matrix of an irreducible, discrete time Markov chain (MC) {Xk},  
(k ≥ 0), with finite state space  S = {1, 2,…, N} i.e.  pij = P{Xk = j Xk−1 = i} for all i, j ∈S.  
We are interested in developing accurate ways of finding three key properties of such chains: 

(i) the stationary probabilities {π j},  (1≤ j ≤ N ), and  
(ii) the mean first passage times {mij},(1≤ i, j ≤ N ).  
(iii) the group inverse of the matrix I – P. 

  
2   Stationary distributions of Markov chains 
Let π T = (π1,π 2,....,πN )  be the stationary probability vector of the Markov chain with transition 

matrix P = [pij]. We need to solve  π j = π ii=1

N∑ pij  with π ii=1

N∑ = 1,   

i.e.  π
T (I – P) =  0T  with π Te = 1.  

 
 
3   Mean first passage times 
Let Tij  be the first passage time RV from state i to state j, 
i.e.Tij= min {k ≥  1 such that Xk =  j  given that X0 = i}. Tii  is the first return to state i.

Let mij = E[Tij X0 = i],  the mean first passage time from state i to state j. 

 

 
Let M = [mij ]  be the matrix of mean first passage times.

It is well known that  mij = 1+ pik
k  ≠ j
∑ mkj ,  with mjj = 1 π j .

M  satisfies the matrix equation (I − P)M = E − PD,

where E  = [1] = eeT ,  and  D = Md= [δ ijmij ] = (Πd )−1  (with Π = eπ T ). 
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4   The Group Inverse 
The group inverse A# of I – P  is a special generalized matrix inverse of I – P that has many 
desirable properties. For finite irreducible Markov chains, A# = [I – P + Π]-1 – Π.   The calculation 
of A#  involves the evaluation of a matrix inverse which is prone to round off errors.  Due to time 
constraints, we do not present results on possible calculations other than to refer the reader to the 
paper by Hunter ([8]) where it is shown that the elements of A# = aij

#⎡⎣ ⎤⎦  can be expressed in 
terms of the stationary probabilities and the mean first passage times of the M.C.  In particular, if  

τ j = π kmkjk=1

N∑ = π kmkjk≠ j∑ +1,   then aij
# =

π j (τ j −1−mij ), i ≠ j,
π j (τ j −1), i = j.

⎧
⎨
⎪

⎩⎪
 

 
 
5   Solving for Stationary Distributions 

If G = [I − P + tuT ]−1  where u, t  such that  uTe ≠ 0, π T t ≠ 0, then π T = u
TG
uTGe

.

(Paige, Styan,Wachter,[12]), (Kemeny, [10]), (Hunter, [6]).
In particular if G = [I − P + euT ]−1  then π T = uTG.

 

 
 
6   GTH Algorithm 
The most accurate general procedure for finding the stationary probabilities is the GTH algorithm 
as developed by Grassman, Taksar and Heyman ([2]). An equivalent state reduction procedure 
was given by Sheskin ([13]). 
 
Let  PN = pij⎡⎣ ⎤⎦ ≡ pij

(N )⎡⎣ ⎤⎦   be the N × N transition matrix associated with a M.C. {Xk ,  k ≥ 0},    

with state space SN = {1,2,...,N} , and one-step transition probabilities pij
(N ) = P{Xk+1 = j Xk = i}.  

The general approach is to start with an N–state Markov chain and reduce the state space by 
one state at each stage. Thus in stages SN = SN−1 ∪{N},  SN−1 = SN−2 ∪{N −1},....,  S2 = {1,2}.  
Once we get to two states we expand the state space one state at a time until we return to the 
final set of states SN .   
Assume that the initial M.C. with state space SN  is irreducible and that stationary probability 
vector is given by  π T = (π1 ,π 2,...,πN−1,πN ). Let π T = π (N )T = (π1

(N ),π 2
(N ),...,π N−1

(N ) ,π N
(N ) ).  

From the stationary equations π (N )T = π (N )T PN  or in element form π j
(N ) = π i

(N )
i=1

N∑ pij
(N ),      

( j = 1,2,  ...,N ),
 
express π N

(N )  in terms of π1
(N ) ,…, π N−1

(N )  , i.e. 
 
π N
(N ) =

π i
(N )piN

(N )
i=1

N−1∑
pNj
(N )

j=1

N−1∑
and eliminate 

π N
(N )  from the stationary equations. 

 
Let   PN =

QN−1
(N ) pN−1

(N )(c)

pN−1
(N )(r )T pNN

(N )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  

Partition the stationary probability vector π (N )T = (ν (N−1)T ,  πN
(N ) ),  

where ν (N−1)T = (π1
(N−1),π 2

(N−1),...,πN−1
(N−1) ). It is easily shown that

 
ν (N−1)T IN−1 − PN−1( ) = 0T ,  where  PN−1 =QN−1

(N ) − pN−1
(N )(c)pN−1

(N )(r )T

pN−1
(N )(r )Te(N−1) . 

Let PN−1 = pij
(N−1)⎡⎣ ⎤⎦  then pij

(N−1) = pij
(N ) +

piN
(N )pNj

(n)

S(N )
,  1≤ i ≤ N −1,  1≤ j ≤ N −1.  

Note that calculation of the S(N ) and the pij
(N−1)  do not involve subtractions.
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Observe that PN−1  is a stochastic matrix with state space SN−1,  PN−1  is irreducible and that
ν (N−1)T  is a scaled stationary prob vector of this N −1 state M.C. In particular

π (N−1)T = (π1
(N−1),π 2

(N−1),...,π N−1
(N−1) ) ≡ 1

1−π N
(N ) ν

(N−1)T ,  so that the first N −1 stationary probs of the 

N-state M.C. are scaled versions of the N −1 state M.C.

 

We can repeat this process reducing the state space from n to n – 1 (n = N, N – 1, …, 2) with the 
resulting M.C. with state space Sn-1 having a stationary distribution that is a scaled version of the 
first  n – 1 components of the stationary distribution of the M.C. with n states. 

Thus if Pn = pij
(n)⎡⎣ ⎤⎦  with Pn−1 = pij

(n−1)⎡⎣ ⎤⎦  then pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,  1≤ i ≤ n −1,1≤ j ≤ n −1,  where

S(n) = 1− pnn
(n) = pnj

(n)
j=1

n−1∑ .
 

The pij
(n−1)  can be interpreted as the transition probability from state i to state j of the M.C. on Sn  

restricted to Sn−1 .  (For (i, j)∈Sn−1 × Sn−1  it is possible to jump directly from state i to state j with 
probability pij

(n) . Alternatively, jump from i to j via state n, being held at state n for t (=  0, 1,2,…) 

steps, followed by a jump to j, with probability pin
(n) pnn

(n)( )tt=0

∞∑( ) pnj(n) = pin
(n)pnj

(n)

1− pnn
(n) =

pin
(n)pnj

(n)

S(n)
,  

leading to the general expression for pij
(n−1). ) 

Note that if the M.C. with state space SN is irreducible (i.e. each state j can be reached from state i 
in a finite number of steps k) then the M.C. with state space SN-1 is also irreducible since there will 
still be a path from state j can be reached from state i in k or fewer steps (either avoiding N in the 
original M.C. or in a reduced number of steps if passing through N in the original M.C.)  
 
If we start with π (N )T = (π1

(N ),π 2
(N ),....,πN−1

(N ) ,πN
(N ) ) ≡ (π1,π 2,....,π n−1,π n )  then the N – 1 elements of 

π (N−1)T  are scaled elements of the first N – 1 elements of π (N )T and hence of π1,π 2,....,π n−1.  Thus 
each π (n)T  is a scaled version of (π1,π 2,....,π n−1,π n ).   

The process continues to n = 2, where we have P2 =
p11
(2) p12

(2)

p21
(2) p22

(2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 which is a stochastic matrix.  

The stationary probability vector of this M.C. is given by π (2)T = (π1
(2),π 2

(2) )  which will be a scaled 
version of (π1 ,π 2 ).  The second stationary equation is π 2 = π1p12

(2) +π 2p22
(2),  

implying π 2 = π1
p12

(2)

S(2)
,  where S(2) = 1− p22

(2) = p2 j
(2)

j=1

1∑ = p21
(2) = p1

(2)(r )T e(1).  

 
We now proceed with increasing the state space. 

π 3 =
π i pi3

(3)
i=1

2∑
p3i
(3)

i=1

2∑
= π1

p13
(3)

S(3)
+π 2

p23
(3)

S(3)
, In general,   π n =

π i pin
(n)

i=1

n−1∑
pni

(n)
i=1

n−1∑
= π ii=1

n−1∑ pin
(n)

S(n)
.  

If π j = krj  with r1 = 1  then π ii=1

N∑ = 1 so that k = 1 rii=1

N∑  with   

rn =
ri pin

(n)
i=1

n−1∑
S(n)

,(n = 2,...,N ),  implying π i =
ri
rnn=1

N∑
,   i = 1,2,...,  N .  

Thus the GTH Algorithm procedure can be summarised as 
 
1. Start with a Markov chain with N states and transition matrix PN = pij

(N )⎡⎣ ⎤⎦.  
2. Compute for n = N, N–1, …, ,3,  
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 pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,  1≤ i ≤ n −1,1≤ j ≤ n −1,  where S(n) = pnj

(n)
j=1

n−1∑ .  

3. Set r1 = 1  and compute  rn =
ri pin

(n)
i=1

n−1∑
S(n)

,  for n = 2,...,N .  

4.  Compute   π i =
ri
rjj=1

N∑
,   i = 1,2,...,  N .

 
 
 
7    Solving for Mean First Passage Times 
(i)  If G  is any g-inverse of I − P, then M = [GΠ − E(GΠ )d + I –G + EGd ]D.  (Hunter, [6]).
(ii)  Ge = ge for some g if and only if  M =  [I −G + EGd ]D.   (Hunter,  [9]).
The "standard algorithm" is M =  [I − Z + EZd ]D  where Z = [I − P + eπ T ]−1, Kemeny and Snell's 
"fundamental matrix".                         
 
Hunter ([7]) presented a "simple algorithm" which is the simplest method to simultaneoulsy 
compute the stationary distribution and the MFPTs.

 

If  Geb = [I − P + eeb
T ]-1 = gij⎡⎣ ⎤⎦,  then π j = gbj ,  1≤ j ≤  N ,   and   mij =

1/ gbj , i = j,
(gjj - gij ) gbj , i ≠ j.

⎧
⎨
⎪

⎩⎪
   

 

Hunter ([9]) developed a number of "perturbation algorithms" where the transition matrix is
successively updated  row by row from an initial simple transition matrix to end up with the
required transition matrix. One such algorithm, which appears to be very accurate, is the following: 
(i)   Let  K0 = I . 
(ii)  For  i = 1,  2,  ...,N ,  let pi

T = ei
T P,  bi

T = pi
T −  eT N ,

      Ki = Ki−1 I +Ci( ),where ki = 1− bi
T Ki−1ei  and  Ci =

1
ki

eibi
T Ki−1. 

(iii)  At  i = N , let K = KN  then π T = 1
N

eTK ,   

      M =  [I − K + EKd ]D,   where D = (Πd )−1  .
 
 
8   MFPT via the Extended GTH Algorithm 
We seek a computational procedure for MFPTs, utilising the GTH/State reduction procedure.  
We first summarise the key properties of Markov renewal process (M.R.P.). 
From Hunter ([6]), let {(Xk ,Tk )},  (k ≥ 0},  be a M.R.P. with state space SN and semi-Markov 

kernel Q(t) = Qij (t)⎡⎣ ⎤⎦ , where Qij (t) = P{Xk+1 = j,  Tk+1 −Tk ≤ t Xk = i},  (i, j)∈SN .  
Observe that Xk is the state at the k-th transition, Tk is the time of the k-th transition.  
Let  P = pij⎡⎣ ⎤⎦  be the transition matrix of the embedded M.C. { Xk},  (k ≥ 0).   

Then pij =Qij (+∞)  = P{Xk+1 = j Xk = i}  and Qij (t) = pijFij (t)  where  

Fij (t) = P{Tk+1 −Tk ≤ t Xk = i,  Xk+1 = j}.   
Fij (t)  is the distribution function of the “holding time” Tk+1 −Tk  in state Xk  until transition into 
state Xk+1  given that the M.R.P. makes a transition from state Xk  to state Xk+1 .  

Let µij = t dQij0

∞

∫ (t)  so that µij = pijE[Tk+1 −Tk Xk = i,  Xk+1 = j] . 

Let P(1) = µij⎡⎣ ⎤⎦  then (I − P)M = P(1)E − PMd .  
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Let µ = P(1)e  then µT = (µ1,µ2,...,µN )  where µi = µijj=1

N∑ .  

µi  = E[Tn+1 −Tn Xn = i] is the “mean holding time in state i “. Thus P(1)E = P(1)eeT = µeT .   

Let λ1 = π T µ  be the “asymptotic mean increment”, since for a M.R.P., Md = λ1(Πd )
−1  where 

Π = eπ T  implying mjj = λ1 π j .  
Thus for a M.R.P. {Xn, Tn}, on the state space SN, the MFPT matrix satisfies 
(I − P)M = µ (N )e(N )T − PMd ,where we identify the state space SN  through µ ≡ µ (N ).  
For a M.C. {Xn} with N states and transition matrix P, µ (N )T = (1,1,...,1) = e(N )T  and P(1)E = E,   
its mean first passage time matrix (MFPT) M satisfies (I − P)M = E − PMd  where 

E = 1[ ] = e(N )e(N )T  and Md = [δ ijmij ]= diag(π1,π 2,...,πN ).   

For an M.R.P. with state space Sn partition M = Mn  as Mn =
Mn−1 mn−1

(n)(c)

mn−1
(n)(r )T mnn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,  

where Mn−1 = mij⎡⎣ ⎤⎦,  (1≤ i ≤ n −1,  1≤ j ≤ n −1) ,mn−1
(n)(r )T = (mn1,mn2,....,mn,n−1)  and 

mn−1
(n)(c)T = (m1n ,m2n ,....,mn−1,n ).  

We also partition µ (n)T = (µ1
(n),...,µn−1

(n) ,µn
(n) )  = (µn−1

(n)T ,µn
(n) ) where µn−1

(n)T = (µ1
(n),...,µn−1

(n) ).   
In general, if  (In − Pn )Mn = µ (n)e(n)T − Pn(Mn )d , then (with the details omitted) 

(In−1 − Pn−1)Mn−1 = µ (n−1)e(n−1)T − Pn−1(Mn−1)d  where µ (n−1)T = µn−1
(n)T + µn

(n)pn−1
(n)(c)T

pn−1
(n)(r )Te(n−1)

.                                          

Observe that µ (n)T is a 1× n vector, and µ (n−1)T  is a 1× (n –1) vector, with 

µi
(n−1) = µi

(n) +
µn

(n)pi,n
(n)

S(n)
,  (1≤ i ≤ n −1) where S(n) = pn−1

(n)(r )Te(n−1) = pnj
(n)

j=1

n−1∑ = 1− pnn
(n).  

Further, it can be shown that,  mN−1
(N )(r )T =

pN−1
(N )(r )T MN−1 − (MN−1)d( ) + µN

(N )e(N−1)T{ }
pN−1

(N )(r )Te(N−1) ,  

implying  mNj =
pNk

(N )mkj + µN
(N )

k=1,k≠ j

N−1∑{ }
S(N )

 for 1≤ j ≤ N −1,
 

leading to expressions for mNj  in terms of m1 j ,..,mkj ,..,mN−1, j   (k ≠ j),  i.e. expressions for mNj  in
terms of the remaining elements of the j − th column of M .  
It is more difficult to find mN−1

(N )(c),  i.e. the miN  for 1≤ i ≤ N −1.  It can be shown 

(In−1 −Qn−1
(n) )mn−1

(n)(c) = µn−1
(n) ,  where QN−1

(N ) = pij
(N )⎡⎣ ⎤⎦  for 1≤ i ≤ N −1,  1≤ j ≤ N −1,  an (n–1)×(n–1) 

matrix derived from PN ,  requires further a step by step reduction procedure by eliminating mN−1,N  

from mN−1
(N )(c)T  replacing it in the expressions for the elements m1N ,m2N ,....,mN−2,N .   

We need to express (N −1)× (N −1) matrix QN−1
(N )  in block form. From this we can show that 

mN−1,N =
pN−2
(N−1)(N )(r )TmN−2

(N )(c) + µN−1
(N ){ }

1− pN−1,N−1
(N−1) =

pN−1,k
(N−1)

k=1

N−2∑ mkN + µN−1
(N ){ }

R(N )
,       

 where R(N ) = 1− pN−1,N−1
(N−1) = pN−1, j

(N )
j=1, j≠N−1

N∑  (i.e. obtained from PN ).  
Note that this requires further additional calculations of the R(N) and retaining further 
probabilities from the sub-matrix QN−1

(N )  derived from P(N ) which complicates the procedure. 
 
We can carry out the state reduction process, as in the GTH procedure, reducing the state space by 
1 at successive steps retaining the same MFPT’s for the reduced state space. 
i.e.Mn−1 = mij⎡⎣ ⎤⎦,  for  1≤ i ≤ n −1,  1≤ j ≤ n −1.  Note however we do not have a M.C. at successive 
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state reductions even if we start with a M.C. because the calculation involves the mean holding 
times in the states being modified. i.e. in effect we are using  the M.R.P. variant to preserve the 
mean first passage times for the reduced state space. This is the basis of the procedure developed 
by Kohlas ([11]).  
 
We show however that using just the computations of the GTH algorithm we can find expressions 
for mi1 for i = 1, 2, …, N, i.e. the first column of M. 
 
If we are given Mn−1 = mij⎡⎣ ⎤⎦,  (1≤ i ≤ n −1,1≤ j ≤ n −1) we wish to find mn−1

(n)(c),mn−1
(n)(r )T  and mnn .  

First, for a M.C. mnn = 1 π n  so that we could use the GTH algorithm from the calculation of the 
stationary probabilities. 
For the elements of mn−1

(n)(c),  where mn−1
(n)(c)T = (mn1,...,mn,n−1),we can show that

  mnj =
pnk

(n)mkj + µn
(n)

k=1,k≠ j

n−1∑{ }
S(n)

 for 1≤ j ≤ n −1.
 

For n = 2 : (I2 − P2 )M 2 = µ (2)e(2)T − P2 (M 2 )d ,  implying  

1− p11
(2) − p12

(2)

− p21
(2) 1− p22

(2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

µ1
(2) µ1

(2)

µ2
(2) µ2

(2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

p11
(2)m11 p12

(2)m22

p21
(2)m11 p22

(2)m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  

leading to M 2 =
m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

p21
(2)µ1

(2) + p12
(2)µ2

(2)

p21
(2)

µ1
(2)

p12
(2)

µ2
(2)

p21
(2)

p21
(2)µ1

(2) + p12
(2)µ2

(2)

p12
(2)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. 

This leads to a general procedure for finding all the elements of M. 
 
Step 1:  Start with PN  and concentrate on finding only the expressions for mi1 for i = 1, 2, …, N.  
i.e. if PN = pij

(N )⎡⎣ ⎤⎦  carry out the extended GTH algorithm computing in addition the µ (N ).  

For n = N ,  N -1,  ..., 3,  let pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,    1≤ i ≤ n −1,  1≤ j ≤ n −1,  with  

µi
(n−1) = µi

(n) +
µn

(n)pi,n
(n)

S(n)
,  (1≤ i ≤ n -1),  and S(n) = pnj

(n)
j=1

n−1∑ .

For M.C. variant, start at state N  with  (µ1
(N ),µ2

(N )....,µN
(N ) ) = (1,1,...,1).

 

Let  m11 = µ1
(2) + p12

(2)µ2
(2)

p21
(2) ,   m21 =

µ2
(2)

S(2)
,   with  mn1 =  

pnk
(n)mk1 + µn

(n)
k=2,

n−1∑
S(n)

,  n = 3,...,N .  

This provides the entries of the first column of M = mij⎡⎣ ⎤⎦,  i.e. mN
(1)(N ),  where  

M =  (mN
(1)(N ),mN

(2)(N )....,mN
(N )(N ) ) with mN

(1)(N )T = (m11,m21,....,mN1) .  
Note that we only have to retain the pin

(n)(1≤ i ≤ n −1) and pnj
(n)(1≤ j ≤ n −1) , i.e. the n-th row and  

n-th column of PN , as in the GTH algorithm. 
Step 2:  Now reorder the rows of

 

PN ≡ PN
(1) by moving the first column after the N-th column, 

followed by moving the first row to the last row. 
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PN
(1) =

p11 p12 p1,N−1 p1,N
p21 p22 p2,N−1 p2N

pN−1.1 pN−1,2 pN−1,N−1 pN−1,N

pN1 pN 2 pN ,N−1 pNN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

→

p22 p2,N−1 p2N p21

pN−1,2 pN−1,N−1 pN−1,N pN−1,1

pN 2 pN ,N−1 pNN pN .1
p12 p1,N−1 p1,N p11

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡ PN
(2)

 

Step 3:  Carry out the algorithm, as in Step 1, with PN = PN
(2)  to obtain the vector of MFPTs 

which we label as mN
(2)(N )

 where  mN
(2)(N )T

= (m22,m32,....,mN 2,m12 ).
 

Step 4:  Reorder PN
(2)  as in step 2 to obtain PN

(3)and repeat Step 3 to obtain m
(3)(N )

 where

 m
(3)(N )T

= (m33,m43,...,mN 3,m13,m23).
 

Step k:  Repeat with PN
(k )  to obtain m

(k )(N )
 with m

(k )(N )T
= (mkk ,mk+1,k ,...,mN ,k ,m1,k ,...,mk−1,k )  

Step N:  Finish with PN
(N )  and m

(N )(N )
where m

(N )(N )T
= (mNN ,m1,N ,m2,N ,...,mN−1,N ).  

Step N +1:   Let M =  (mN
(1)(N ),mN

(2)(N )
....,mN

(N )(N )
).

Step N + 2:  Reorder M  to obtain M = (mN
(1)(N ),mN

(2)(N )....,mN
(N )(N ) )

 

 
This last step can be performed in MatLab as follows:  
 
     end 
        for col=1:m 
            for row= 1:m 
            P_new1(mod(row+m-2,m)+1,col)=P(row,col); 
            end 
        end 
        for col=1:m 
            for row= 1:m 
           P_new2(row,mod(col+m-2,m)+1)=P_new1(row,col); 
            end 
        end 
       P=P_new2; 
        PP=P; 
    end 
    for col=1:m 
        for row=1:m 
            M1(mod(row+col-2,m)+1,col)=M(row,col); 
        end 
     
While this procedure requires N repetitions of the extended GTH, one would have to carry N 
auxiliary calculations using the elements of the sub-matrices of the Pn , Qn−1

(n) , for each n and retain 
more elements of Pn rather than just the last row and column  The extended GTH, (EGTH), 
algorithm outlined above retains calculation accuracy with no subtractions being involved. 
 
 
9   The Test Problems 
The following test problems were introduced by Harrod & Plemmons ([3]) and have considered 
by others in different contexts. 
 
TP1: The original transition matrix was not irreducible and was replaced (Heyman ([4]), Heyman 
& Reeves ([5])) by 
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.1 .6 0 .3 0 0

.5 .5 0 0 0 0

.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

 
TP2: (Also Benzi ([1])) 

 

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .00009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.  

 
TP3: 

 

0.999999 1.0 E − 07 2.0 E − 07 3.0 E − 07 4.0 E − 07
0.4 0.3 0 0 0.3

5.0 E − 07 0 0.999999 0 5.0 E − 07
5.0 E − 07 0 0 0.999999 5.0 E − 07
2.0 E − 07 3.0 E − 07 1.0 E − 07 4.0 E − 07 0.999999

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.  

 
TP4 and variants: 
TP41 :ε = 1.0E − 01;  TP42 :ε = 1.0E − 03;TP43 :ε = 1.0E − 05;  TP44 :ε = 1.0E − 07   

     

.1− ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1− ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 
 
10    Computation comparisons for MFPT 

We present comparisons for the test problems for the MFPT matrix M, using the 4 algorithms: 

Standard, Simple, Perturbations and Extended GTH, each under double precision, and compute 
the MAXIMUM RESIDUAL ERRORS as max

1≤i≤m,1≤ j≤m
mij − pikmkjk≠ j∑ −1 .  
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Table 1:  Maximum Residual Errors for the Four Algorithms for MFPTs 
  M_Standard M_Simple M_Perturbation M_EGTH 
TP1 5.6843E-14 5.6843E-14 1.1369E-13 1.1369E-13 
TP2 1.8190E-12 1.8190E-12 3.6380E-12 3.6380E-12 
TP3 1.7027E+00 1.7594E+00 1.5073E+00 1.6188E+00 
TP41 1.4211E-14 2.1313E-14 1.4211E-14 1.4211E-14 
TP42 1.0370E-12 1.8190E-12 9.0950E-13 1.8190E-12 
TP43 1.1642E-10 1.7462E-10 1.7462E-10 1.1642E-10 
Tp44 1.4901E-08 1.4901E-08 1.4901E-08 7.4506E-09 
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Leontief’s Input-Output Representation of 

Multiple and Simple Regression Coefficients  
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Abstract    First, we show analytically that the nexus between Least Squares (LS) estimators of 
multiple and simple regression coefficients are exactly the same as between partial and total 
derivatives of the general function of a given number of independent variables. Second, LS estimators 
of multiple and simple regression coefficient vectors correspond, respectively, to net output and gross 
output vectors in Leontief’s input/output matrix equation where the input coefficient matrix is 
composed of LS estimators of the coefficients in simple regression equations that can be formed from 
the given number of regressors. Third, we show that each element of LS estimator of multiple 
regression coefficient vector is represented by Cramer’s rule. Finally, we show that LS estimator of 
each multiple regression coefficient as represented by Cramer’s rule can be transformed to its 
counterpart in Frisch and Waugh Theorem. Thus, the fragments in regression theory are related in a 
unifying manner, involving the works of two Nobel laureates in Economics. 

Keywords  Simple and multiple regression coefficients; Least Squares estimator; Cramer’s rule; 
Frisch/Waugh Theorem; Input-output model; net output, gross output; input coefficient matrix; Ragnar 
Frisch; Wassily Leontief.  
 
 
1. Introduction 

 
        Consider the differentiable general function: 

      1 2( , ,..., )KY f X X X .                     (1) 

Then,  follows from (1) 

   1 2 1
1 2 1 1

... ( , 1,2,..., )
K

K K
K K k k

k k k k k k

dX dX dK dX dXdY
f f f f f f k K

dX dX dX dX dX dX


 
        

 
       (2) 

where /k kf Y X    and   1 kk      with k   denoting Kronecker delta (, i.e.,  1k  if  k   , and 

 0k  if k   )  so that  k   is Kronecker delta in reverse:  0k  if  k   , and   1k  if k   . 

        Writing Equation (2) for kf ,  

                 
1

( , 1, 2,..., )
K

k k

k k

dXdY
f f k K

dX dX



   

 
 .     (3) 

Interpretation of Equation (3) is that in general partial effect  of an independent variable kX  on 

dependent variable Y ( kf )  is its total effect on Y ( / kdY dX )  net of  its indirect effects on Y  through  

1K   other independent variables accounted for by the second term of the right-hand side. However, 

                                                            
* The authors retain the copyright. 
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this entails a question of whether the  general relationships between partial and total derivatives 
represented by (3) are identical with those between multiple and simple LS slope estimators, though it 
is not necessarily an a priori expectation in view of the fact that Equation (3) has nothing to do with 
the least squares. This question is fully addressed in Section 2. 

 
2.  Derivation of LS Estimators in Implicit Form without Calculus and 
Matrix 
        Except for the bivariate regression case as in Ehrenberg (1983) as an example, derivation of LS 
coefficients with no calculus and no matrix algebra is generally perceived as taking a tedious algebraic 
workout as the number of regressors increases. In this section, however, we show that it takes 
basically the same derivation process as in the bivariate case. To facilitate the derivation, we write the 
LS estimated multiple linear regression model as 

               1 1 1
... (i 1, 2..., ; 1,..., )

i i

K
i K K i ki k ik

Y a X b X b e a X b e n k K


                   (4) 

where iY  is the regressand, kiX k-th regressor, a and kb  LS estimators of intercept and slope 

coefficients, and   ie  LS estimated residuals. 

        Let the bar on top of each variable signify the sample mean of the variable. Then,  

;
i i ii i i k k kY Y y X X x    ,       (5) 

and the mean of Equation (4) can be written as 

1
(i 1, 2..., ; 1,..., )

K
i ki k ik

y a x b e n k K


      .    (6) 

In light of (4), (5), and (6), the error sum of squares can be written as 

 
2

1

2

1 1

n
ii

n K
i ki ki k

ESS e

Y a X b



 



     



 

 

    
   

2

1 1

2

1 1 1

n K
i i k ki ki k

n K K
i ki k i k ki k k

Y y a X x b

y x b Y a X b

 

  

       

       

 

  

 

  2

1 1
e

n K
i ki k ii k

y x b
 
        

   2
2

1 1 1
2 e e

n K K
i ki k i ki k i ii k k

y x b y x b
  

       
    

2
2

1 1 1 1 1
2

n K n K n
i ki K i i ki k ii k i k i

y x b e y x b e
    
       
         
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2

2 2
1 1

n K
i ki k i ii k

y x b ne ne
 
     
    .                             (7) 

The first term of the last equality in (7) can be re-expressed, with k  as Kronecker delta in reverse 

as defined earlier in (2), as 

2

1 1

n K
i ki ki k

y x b
 
  
    

  2

1 1
( , 1,2,..., )

n K
i i k ki ki

y x b x b k K
 
             

  2

1 1

n K
i i k ki ki

y x b x b
 
           

   2
2 2

1 1 1
2

i

n K K
i i k k i i k k ki ki

y x b x y x b b x b 
  

       
          

 

 21 2 2
1 1 1 1 1

2
n K n K n

i i k ki i i k k ki ki i i
y x b x y x b b x b 

    
                        

 

2 ( , 0)k k k k k k kb b         

22

4 2
k k

k k k
k k

b
  
 

 
    

 
.                                      (8) 

Feeding (8) back into (7) yields 

     

22 2
2 ( 0; 1 2)

4 2 4
k k k

k k k k k
k k k

ESS b ne n K
     
  

 
           

 
.           (9) 

Now, it is all obvious from (9) that the minimum ESS  is reached only when 

           ; 0
2

k
k

k

b e



   .               (10)  

Substituting k  and k  implicitly defined by the fifth equality in (8) into kb  in (10), we obtain 

        
2

k
k

k

b



          

      
 1 1

2
1

2

2

n K
ki i i ki

n
kii

x y x b

x


 





 


  
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      1 1 1

2 2
1 1

n K n
ki i ki i ki i

n n
ki kii i

x y x x b

x x


  

 

   
 

    

      1 1
12 2

1 1

n n
Kki i ki ii i

kn n
ki kii i

x y x x
b

x x
 


 

 
  
 
 

 
 


  .              (11) 

Defining simplified notations as   

                      1 1

2 2
1 1

;

n n
ki i ki ii k i k

ky kn n
k k k kki kii i

x y x xx y x x
g g

x x x xx x
 

 

    
          

 
 

 
 ,            (12) 

we can rewrite Equation (11) alternatively in exactly the same form as in (3): 

1
( , 1, 2,..., )

K
k ky k kb g g b k K


       .†                      (13)  

where kyg is  the simple LS slope coefficient that results whenY is regressed solely on kX , whereas 

kg   defines simple LS slope coefficient  when X   is regressed solely on kX , in both cases with the 

intercept retained. Equation (13) is the first ever compact scalar representation of multiple regression 
coefficients in its unique form. In its nutshell, (13)  represents multiple regression coefficients as a 
linear system of K simultaneous equations in K simple regression coefficients.  

        It is clear from comparison of (3) and (13) that multiple LS slope estimators kb  are related to 

simple LS slope estimators kyg in exactly the same way as partial derivatives kf are to total 

derivatives   / kdY dX , with correspondences of kb and kyg , respectively, to kf  and / kdY dX . 

Accordingly, we can conclude that kb and kyg , respectively,  measure exactly what kf (partial 

impact) and / kdY dX (total impact) measure in the general function of K independent variables. This 

correspondence between kb  and kf  is hardly a surprising  result, given our general understanding 

that the multiple regression slope coefficients measure the partial impacts of regressors on the 
regressand, or technically in light of Frisch-Waugh Theorem in Greene (p.27, 2012) or Frisch and  
Waugh (1933).   There are three points noteworthy, however. First, the correspondence of (3) and (13) 
is a bit of a surprise in the sense that kb and kyg are the solutions of the conditions for minimizing the 

sum of squared residuals, whereas kf  and / kdY dX  are merely the partial and total derivatives of a 

general function.  Second, the correspondence of (3) and (13) holds regardless of functional form of 
(3). Third, the correspondence also hold regardless of whether (3) is a misspecification.  Furthermore, 
as will be shown in the following section, vectors of  LS estimated multiple and simple LS slope 

                                                            
† When 1K   (simple regression), 1k     and 11 0k    so that (14) is reduced to 

2
1 1

n n
k ky ki i kii i

b g x y x
 

    /k k kx y x x  ,  The LS estimator of simple regression slope 

coefficient when iY  is regressed on 
ikX .   
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coefficients collectively form a Leontief framework, namely, input-output model in which total output 
and net output of a k-th industry correspond to kb and kyg , respectively. 

3. Input-Output Nexus of Simple and Multiple LS Estimators 

        The primary objective of the restricted derivation approach in Section 2 was to obtain the 
multiple LS slope coefficients in implicit forms consistent with partial derivative functions in general. 
With that mission accomplished, we now admit matrix algebra for its operational virtues in 
demonstrating that the LS slope coefficients exclusively define a matrix equation which is in essence 
Leontief  input-output model as follows. 

        Stacking ( 1, 2,..., )kb k K in (8), we arrive at a system of  n linear equations  in (13) in matrix 

form as  

1 12 1( 1) 11 1

2 21 2( 1) 22 2

1 1( 1) y ( 1) ( 1)2 ( 1) K

1 2 K( 1)

0

0

0

0

y K K

y K K

K KK K K K

K KKy K K K

g g g gb b
g g g gb b

b bg g g g

b bg g g g





    



            
      
             
      
              




      





,  (14) 

or compactly as  

yb g Hb  ,        (15) 

which is a Leontief static open input-output model in disguise. Writing (15) for yg  and b , 

respectively,  

( )yg b H b I H b Gb     ; ,               (16.1)  

1 1( ) y y yb I H g G g Tg       . ‡      (16.2) 

Substituting (16.2) into the second term of the first equality of (16.1),    

y y yg b H T g b A g                   (17) 

where 

112 1( 1) 1

21 2( 1) 2 2

( 1)1 ( 1)2 ( 1) K ( 1) y

1 2 K( 1)

1

1

( ) ; ( 1)

1

1

yK K

K K y

y

K K K K

K K K Ky

gg g g

g g g g

G K K I H g K

g g g g

g g g g





   



  
  
  
          
  
        






     



,   

(18) § 

                                                            
‡ 

1T G corresponds to the so-called technology matrix in Leontief’s input-output model. 
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Matrix equation (17) is in exactly the same form as Leontief’s input-output model where 

( 1)b K  and ( 1)yg K   are analogous to net industry and gross industry output vectors, respectively, 

and A  is analogous to input coefficient matrix. 

 

4. Each Multiple Regression Coefficient in the Form of  Cramer’s Rule 

        Furthermore, analytical solution of each component of  b  by Cramer’s Rule (Chiang (1984), p. 
109) follows as:   

( 1, 2,..., )k kb G G k K         (19) 

where ( )kG K K defines a square matrix obtained  by replacing its i-th column of G  with yg   both 

as defined in  (18). Both kG and G  are special square matrices, special in the sense that both consist  

exclusively of  LS estimators of  simple regression coefficient, hence may be referred to as a special 
Cramer’s rule. 

5.  Equivalence of Cramer’s and Frisch/Waugh’s  Representations 

         If kb  in  the form of (19) is correct, then it must be equal to  kb  in the form of Frisch/Waugh 

(1933)  as stated in Greene (2012, Corollary 3.3.2, p.28).  That is,  

1( )k k k k k k kb G G x M x x M y     .             (20) 

For a short-cut proof of (20), define a diagonal matrix D : 

1 1

2 2

1 1

0 0 0

0 0 0

0 0 0

0 0 0
K K

K K

x x

x x

D

x x

x x
 

 
  
 
  
  




    



.       (21) 

Then,  LS estimator of slope coefficient vector in (16.2) can be expressed alternatively as 

                   

1

1( )

y

y

b G g

DG D g













 

 

1
1 1 1 2 1 1 1 1

2 1 2 2 2 1 2 2
1

1 1 1 2 1 1 1 1

1 2 1

K K

K K

K K K K K K K

K K K K K K K

x x x x x x x x x y

x x x x x x x x x y

x x x y

x x x x x x x x x y

x x x x x x x x x y







     



       
        
     
        
         




     



.     (22) 

                                                                                                                                                                                 
§ Note that G is not symmetric, i.e., G G  since k kg g  in 

general: k k k k k kg x x x x x x x x g           .  

Eric Iksoon  Im, Tam Bang Vu

142



 

 

Partitioning  ( )x N K  as  k kx x x   in which ( 1)kx K  denotes k-th column vector of 

x whereas (N ( 1))kx K    denotes x  with kx  excluded, b  in (22) can be re-expressed as 

   
1 1

1 1
1 1

k k k k k k k
k k

k k k k k k k

x x x y x x x x x y
b x x x y E x x E x y

x x x y x x x x x y

 
             

                     


     

’   (23) 

where 1 ( 1, 2,..., )kE k K are nonsingular elementary permutation matrices that result when the 1-st 

and k-th rows in the identity matrix of the same order are interchanged as discussed , for example, in 
Searle (1982, p.173). 

        Applying Cramer’s rule to the last expression of (23),  k-th element of b follows as 

                           
k k k k k k k

k
k k k k k k k

x y x x x x x x
b

x y x x x x x x

   


   
 

     
 

                           
 
 

1

1
k k k k k k

k k k k k k k k

x y x x x x x y

x x x x x x x x





   


   

   

   
 

                           
 

 

1

1

k n k k k k

k n k k k k k

x I x x x x y

x I x x x x x





    
    

   

   
 

                    
1( )k k k k kx M x x M y    ,   (k = 1, 2, 3, …, K)                         (24) 

in which the second equality is based on the general formula for determinants of partitioned matrices 

discussed, for example, in Searle (1982, p.258), and 2
k kM M   is an idempotent matrix with rank 

1n K  . 

6.  Summaries 

        Our discussions up to this point may be summarized in theorems without redundant proofs as 
follows: 

Theorem 1:  Let 1 2( , , .., )KY f X X X .Then, K partial derivatives of Y  can be represented by  

                                
1

, ( , 1,2,..., )
K

k k

k k

dXdY
f f k K

dX dX



   

 
  

where kf  denotes partial derivatives of Y  and kdY dX total derivatives of  Y ,  and k  the Kronecker 

delta in reverse. 

Theorem 2:  Let 1 1 ...
i ii K K iY X X        ( 1, 2,..., ; 1 1 )i n K K n        as the 

multiple linear regression model of iY , ( 1, 2,..., ; 2 )
i ii k k ky kY X u k K n        as the 

simple linear regression model of iY  on 
i

X  , and 
i i ik k k kX X u        ( , 1, 2,..., )k K  as 

the simple linear regression model of 
ikX on 

i
X  . Then, 
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1

( , 1, 2,..., )
K

k ky k kb g g b k K


     
 , 

where kb  denotes LS estimator of k , kyg  LS estimator  of ky , and kg   LS estimator of k  , k   

denoting the Kronecker delta in reverse. 

Theorem 3 (Leontief’s Representation):  Retain ( 1)b K   and  (K 1)yg   as denoting vectors of LS 

multiple slope coefficients and LS simple slope coefficients, respectively. Then, their relationship is 
represented precisely in the form of Leontief’s input-output model:  

                                      y yg b A g     

where input matrix ( )A K K  consists of all simple regression coefficients that can be formed 

between the regressors.  

Theorem 4 (Cramer’s Representation):  LS estimator of each multiple regression slope coefficient 
can be represented by Cramer’s rule: 

                                         ( 1, 2,..., K)k kb G G k   

where matrices G and kG are as defined in (19). 

Theorem 5 (Equivalence of Cramer’s and Frisch/Waugh’s  Representations):  

                                 1( ) ( 1, 2,..., K)k k k k k k kb G G x M x x M y k     . 

7. Conclusion 

        In this note, we have derived the analytical scalar expression for LS estimators of multiple slope 
coefficients in implicit form such that their relationships are in exactly the same form as the partial 
and total derivatives of a general function.  Subsequently, we have shown that LS estimators of the 
multiple and simple LS slope coefficients bear exactly the same relationships as between net and gross 
outputs in Leontief input-output model. We also derived an alternative analytical expression for the 
LS estimators of multiple regression coefficients solely in terms of the LS estimators of the simple 
regression coefficients, with the proof that it is equivalent to the expression by Frisch and Waugh. In 
its nutshell, this note interconnects some fragments in regression theory, thereby shedding some 
additional light on the nature of the least squares estimators that have been exercised in empirical 
studies for more than two centuries. 
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Strong Stability Bounds for Queues
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Abstract This paper investigates the M/M/s queuing model to predict an estimate for the proxim-
ity of the performance measures of queues with arrival processes that are slightly different from the
Poisson. Specifically, we use the strong stability method to obtain perturbation bounds on the effect of
perturbing the arrival process in the M/M/s queue. Therefore, we build an algorithm based on strong
stability method to predict stationary performance measures of the GI/M/s queue. Some numerical
examples are sketched out to illustrate the accuracy of the proposed method.

Keywords Queues; Strong stability method; Perturbation bounds; Algorithm.

1 Introduction
For the basic theorems of the strong stability method are given in [1]. The main tool

for our analysis is the weighted supermum norm, also called υ-norm, denoted by ‖.‖υ,
where υ is some vector with elements υ(k) ≥ 1 for all k ∈ Z+, and for any vector f with
infinite dimension

‖f‖υ = sup
k≥0

|f(k)|
υ(k)

. (1)

Let µ be a probability measure on Z+, then the υ-norm of µ is defined as

‖µ‖υ =
∑
j≥0

υ(j)|µj |. (2)

The υ-norm is extended to stochastic kernels on Z+ in the following way: let P the matrix
with infinite dimension then

‖P‖υ = sup
k≥0

‖P (k, .)‖υ
υ(k)

= sup
k≥0

1

υ(k)

∑
j≥0

υ(j)|Pkj |. (3)

Note that υ-norm convergence to 0 implies elementwise convergence to 0.

We associate to each transition kernel P the linear mappings:

(µP )k =
∑
i≥0

µiPik. (4)

(Pf)(k) =
∑
i≥0

f(i)Pki. (5)
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The strong stability method [2, 1] considers the problem of the perturbation of general
state space Markov chains using operator’s theory and with respect to a general class of
norms. The basic idea behind the concept of stability is that, for a strongly stable Markov
chain, a small perturbation in the transition kernel can lead to only a small deviation of
the stationary distribution.

Definition 1. A Markov chain X with transition kernel P and stationary distribution
π is said to be strongly stable with respect to the norm ‖.‖υ if ‖P‖υ < ∞ and every
stochastic kernel Q in some neighborhood {Q : ‖Q− P‖υ ≤ ε} admits a unique stationary
distribution ν and

‖ν − π‖υ → 0 as ‖Q− P‖υ → 0. (6)

In fact, as shown in [2], X is strongly stable if and only if, there exists a positive constant
c = c(P ) such that

‖ν − π‖υ ≤ c‖Q− P‖υ. (7)

In the sequel we use the following results.

Theorem 1. ([2]) The Markov chain X with the transition kernel P and stationary dis-
tribution π is strongly stable with respect to the norm ‖.‖υ, if and only if there exists a
probability measure α = (αj) and a vector h = (hi) on Z+ such that πh > 0, α1 = 1, αh
is a positive scalar, and

a. The matrix T = P − hα is non-negative, where hα = (aij)ij such that aij = hiαj for
i, j ∈ Z+.

b. There exists ρ < 1 such that Tυ(k) ≤ ρυ(k) for k ∈ Z+.
c. ‖P‖υ <∞.

Here 1 is the vector having all the components equal to 1.

Theorem 2. ([1]) Let X be a strongly υ-stable Markov chain that satisfies the conditions
of Theorem 1. If ν is the probability invariant measure of a stochastic kernel Q, then for
‖∆‖υ < (1− ρ)/c, we have the estimate

‖ν − π‖υ ≤ c‖∆‖υ‖π‖υ(1− ρ− c‖∆‖υ)−1, (8)

where ∆ = Q− P , c = 1 + ‖1‖υ‖π‖υ and ‖π‖υ ≤ (αυ)(1− ρ)−1(πh).

2 Analysis of the Model

2.1 Model Description

We consider a GI/M/s queueing system (s servers) with infinite capacity. Customers
arrive at time points t0 = 0, t1, t2, . . . where the interarrival times Zn = tn+1 − tn, n =
1, 2, 3, . . ., are independent identically distributed random variables (i.i.d r.v.’s) having a
non lattice c.d.f H(·) with mean γ−1. The sevice times S1, S2, . . . are i.d.d r.v.’s having a
common exponentiel d.f with a finite mean µ−1. Let γ/sµ be the traffic intensity, assumed

to be strictly less than one. Let Q̃(t) be the number of customers in the system at time t

and define Q̃(tn− 0) = Q̃n, n = 1, 2, . . .. Thus Q̃n is the number in the system just before

the nth arrival. Now consider the relationship between Q̃n and Q̃n+1. We have

Q̃n+1 =

{
Q̃n + 1− X̃n+1 if Q̃n + 1− X̃n+1 > 0,

0 if Q̃n + 1− X̃n+1 ≤ 0,
(9)
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where X̃n+1 is the total number of potential customers who can be served by s servers dur-

ing an interarrival period Zn. Due to the exponentiel service time, the process {Q̃n, n =
0, 1, 2, . . .} is an homogeneous Markov chain. From (9), it is found that the evolution of

the homogeneous Markov chain (Q̃n)n≥1 is governed by the transition probability matrice

P̃ = (P̃ (i, j))i,j≥0 described by

P̃ (i, j) = 0 (i+ 1− j < 0).

P̃ (i, j) =

∫ ∞
0

(sµt)i+1−j

(i+ 1− j)!
e−sµtdH(t) (i ≥ s− 1, j ≥ s, i+ 1− j ≥ 0).

P̃ (i, j) =

∫ ∞
0

(
i+ 1

i+ 1− j

)
e−jµt(1− e−µt)i+1−jdH(t) (i ≤ s− 1, i+ 1− j ≥ 0)

P̃ (i, j) =

∫ ∞
0

∫ t

τ=0

(
s

s− j

)
e−jµ(t−τ)(1− e−µ(t−τ))s−j (sµτ)i−s

(i− s)!
e−sµτsµdτdH(t)

(i ≥ s, j < s, i+ 1− j ≥ 0).

Consider also an system M/M/s, which has the same distribution of service times,
where the interarrival times are independent identically distributed random variables and
vary according to an exponential distribution Eλ(·) with a finite mean λ−1. Further, the
embedded Markov chain (Qn)n≥1, representing the number of customers in the M/M/s
queueing system. Denote by P = (P (i, j))i,j≥0 the transition operators of the Markov
chains (Qn)n≥1.

2.2 υ-Strong Stability Conditions

the main work in strong stability method is finding β such that ‖T‖υ < 1, where T
is a stochastic kernel. For that, we choose the function υ(k) = βk, β > 1, hi = Ii=0 and
αj = P0j (see Theorem 1).

Theorem 3. Suppose that in the M/M/s queueing system the following geometric ergod-
icity condition, λ/sµ < 1, holds. Then for all β ∈ R such that, 1 < β < β0, the embedded
Markov chain (Qn)n≥1 is υ-strongly stable for the test function υ(k) = βk.

Proof. We have πh = π0 > 0, α1 = 1 and αh = α0 = P00 > 0.

Tij = Pij − hiαj =

{
0, if i = 0,
Pij , if i ≥ 1.

(10)

Hence, the kernel T is nonnegative.
According to Equation (5), we have:

Tυ(i) =
∑
j≥0

βjTij . (11)

(a) If i = 0, then

Tυ(0) =
∑
j≥0

βjT0j = 0. (12)

(b) If 1 ≤ i ≤ s− 2, then

Tυ(i) =

i+1∑
j=0

βjPij = βi+1

∫ ∞
0

i+1∑
j=0

(
i+ 1

j

)(
1− e−µt

β

)i+1−j

(e−µt)jdEλ(t)

≤ βi
∫ ∞
0

1

β

(
1 + (β − 1)e−µt

)2
dEλ(t)
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We pose, ρ1 =

∫ ∞
0

1

β

(
1 + (β − 1)e−µt

)2
dEλ(t) =

∫ ∞
0

f(t)dEλ(t)

(c) If i = s− 1, then

Tυ(s− 1) =
s∑
j=0

βjP(s−1)j =
s−1∑
j=0

βjP(s−1)j + βsP(s−1)s

= βs
∫ ∞
0

(
1− e−µt

β
+ e−µt

)s
dEλ(t)

≤ βs−1
∫ ∞
0

1

β

(
1 + (β − 1)e−µt

)2
dEλ(t) = βs−1ρ1

(d) If i ≥ s, then

Tυ(i) =
i+1∑
j=0

βjPij =
s−1∑
j=0

βjPij +
i+1∑
j=s

βjPij

s−1∑
j=0

βjPij =

s−1∑
j=0

βj
∫ ∞
0

∫ t

τ=0

(
s

s− j

)
e−jµ(t−τ)(1− e−µ(t−τ))s−j (sµτ)i−s

(i− s)!
e−sµτsµdτdEλ(t)

≤ βs−1
∫ ∞
0

[
e−sµt

∞∑
n=i+1−s

(sµt)n

n!
+ (β − 1)e−sµt

( s

s− 1

)i+1−s
∞∑

n=i+1−s

((s− 1)µt)n

n!

−βe−sµt (sµt)i+1−s

(i+ 1− s)!

]
dEλ(t)

And,

i+1∑
j=s

βjPij = βi+1

∫ ∞
0

e−sµt
i+1−s∑
n=0

(sµt/β)n

n!
dEλ(t)

Therefore,

Tυ(i) =

s−1∑
j=0

βjPij +

i+1∑
j=s

βjPij

≤ βi
∫ ∞
0

(
1

β
− 1

β
e−sµt +

(β − 1

β

)( s

s− 1

)
(e−µt − e−sµt) + βe−sµt

)
dEλ(t)

We pose,

ρ2 =

∫ ∞
0

(
1

β
− 1

β
e−sµt +

(β − 1

β

)( s

s− 1

)
(e−µt− e−sµt) +βe−sµt

)
dEλ(t) =

∫ ∞
0

g(t)dEλ(t)

We have, with assumption that s ≥ 2,
s

s− 1
= 1 +

1

s− 1
≤ 2.

Then, g(t) =
1

β
− 1

β
e−sµt +

(β − 1

β

)( s

s− 1

)
(e−µt − e−sµt) + βe−sµt (13)

≤ 1

β

(
1 + (β − 1)e−µt

)2

= f(t) (14)
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this shows that ρ2 =

∫ ∞
0

g(t)dEλ(t) ≤
∫ ∞
0

f(t)dEλ(t) = ρ1.

It suffices to take, ρ = max(ρ1, ρ2) =

∫ ∞
0

1

β

(
1 + (β − 1)e−µt

)2
dEλ(t) which is smaller then

1 for all β > 1. Now, we have Eλ(t) = 1− e−λt, then

ρ =
1

β
+

2λ(β − 1)

β(λ+ µ)
+
λ(β − 1)2

β(2µ+ λ)
(15)

And, with assumption that β > 1, We have ρ < 1 ⇒ β <
2µ2

λ(λ+ µ)
.

We pose, β0 =
2µ2

λ(λ+ µ)
. Then, for all β such that 1 < β < β0, we have ρ < 1.

Now, we verify that ‖P‖υ <∞. We have

T = P − hα ⇒ P = T + hα ⇒ ‖P‖υ ≤ ‖T‖υ + ‖h‖υ‖α‖υ, (16)

or, according to equation (3),

‖T‖υ = sup
i≥0

1

υ(i)

∑
j≥0

υ(j)|Tij | ≤ sup
i≥0

1

υ(i)
ρυ(i) ≤ ρ < 1. (17)

According to Equations (1) and (2), we have: ‖h‖υ = sup
i≥0

1

υ(i)
|hi| = 1,

And, ‖α‖υ =
∑
j≥0

υ(j)|αj | =
∑
j≥0

βjP0j = P00 + βP01 < β(P00 + P01) ≤ β < ∞.

Then, ‖P‖υ <∞.
The Markov chain (Qn)n≥1 being strongly stable then, the ‖π − π̃‖υ can be bounded in

terms of ‖P − P̃‖υ.

2.3 Bound on Perturbation

To be able to estimate numerically the margin between the stationary distributions
of the Markov chains (Q̃n)n≥1 and (Qn)n≥1 we estimate the norm of the deviation of the
transition kernel.

Lemma 4. Let P̃ (respectively P ) be the transition kernel of the Markov chain (Q̃n)n≥1
(respectively of the Markov chain (Qn)n≥1). Then, for all β such that 1 < β < β0, we
have:

‖P − P̃‖υ ≤
∫ ∞
0

(
1 +

(
β − 1

)
e−µt

)
|H − Eλ|(dt) (18)

Proof. From Equation (3), we have

‖P − P̃‖υ = sup
i≥0

‖P (i, .)− P̃ (i, .)‖υ
υ(i)

= sup
i≥0

1

υ(i)

i+1∑
j=0

υ(j)|Pij − P̃ij |. (19)
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(a) For i ≤ s− 2, we have,

i+1∑
j=0

υ(j)|Pij − P̃ij | =
i+1∑
j=0

βj |Pij − P̃ij |

≤ βi+1

i+1∑
j=0

∫ ∞
0

(
i+ 1

i+ 1− j

)(
1− e−µt

β

)i+1−j

(e−µt)j |H − Eλ|(dt)

≤ βi
∫ ∞
0

(
1 + (β − 1)e−µt

)
|H − Eλ|(dt)

Then, ‖P − P̃‖υ ≤
∫ ∞
0

(
1 + (β − 1)e−µt

)
|H − Eλ|(dt). (20)

We pose, ∆1 =

∫ ∞
0

(
1 + (β − 1)e−µt

)
|H − Eλ|(dt) =

∫ ∞
0

ζ(t)|H − Eλ|(dt)

(b) For i = s− 1, we have,

s∑
j=0

υ(j)|P(s−1)j − P̃(s−1)j |

=

s−1∑
j=0

βj |P(s−1)j − P̃(s−1)j |+ βs|P(s−1)s − P̃(s−1)s|

≤ βs
∫ ∞
0

(
1− e−µt

β
+ e−µt

)s
|H − Eλ|(dt) ≤ βs−1

∫ ∞
0

(
1 + (β − 1)e−µt

)
|H − Eλ|(dt)

Then,

‖P − P̃‖υ ≤
∫ ∞
0

(
1 + (β − 1)e−µt

)
|H − Eλ|(dt) = ∆1. (21)

(c) For i ≥ s, we have,

i+1∑
j=0

υ(j)|Pij − P̃ij | =

i+1∑
j=0

βj |Pij − P̃ij | =

s−1∑
j=0

βj |Pij − P̃ij |+
i+1∑
j=s

βj |Pij − P̃ij |

we have,

s−1∑
j=0

βj |Pij − P̃ij |

≤ βs
∫ ∞
0

∫ t

0

[
s−1∑
j=0

(
s

j

)(
1− e−µ(t−τ)

β

)s−j (
e−µ(t−τ)

)j] (sµτ)i−s

(i− s)!
e−sµτsµdτ |H − Eλ|(dt)

≤ βs−1
∫ ∞
0

[
e−sµt

∞∑
n=i+1−s

(sµt)n

n!
+ (β − 1)e−sµt

( s

s− 1

)i+1−s
∞∑

n=i+1−s

((s− 1)µt)n

n!

−βe−sµt (sµt)i+1−s

(i+ 1− s)!

]
|H − Eλ|(dt)
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And,

i+1∑
j=s

βj |Pij − P̃ij | ≤ βi+1

∫ ∞
0

e−sµt
i+1∑
j=s

(sµt/β)i+1−j

(i+ 1− j)!
|H − Eλ|(dt)

= βi+1

∫ ∞
0

e−sµt
i+1−s∑
n=0

(sµt/β)n

n!
|H − Eλ|(dt)

therefore,

i+1∑
j=0

υ(j)|Pij − P̃ij | ≤ βi
∫ ∞
0

(
1

β
− 1

β
e−sµt +

(β − 1

β

)( s

s− 1

)
(e−µt − e−sµt) + βe−sµt

)
|H − Eλ|(dt)

Then,

‖P − P̃‖υ ≤
∫ ∞
0

(
1

β
− 1

β
e−sµt+

(β − 1

β

)( s

s− 1

)
(e−µt−e−sµt)+βe−sµt

)
|H−Eλ|(dt) (22)

We pose,

∆2 =

∫ ∞
0

(
1

β
− 1

β
e−sµt+

(β − 1

β

)( s

s− 1

)
(e−µt−e−sµt)+βe−sµt

)
dEλ(t) =

∫ ∞
0

g(t)|H−Eλ|(dt)

According to Equations (13), we have: g(t) ≤ ζ(t).

This shows that ∆2 ≤ ∆1. Finally, ‖P − P̃‖υ ≤ ∆ = max(∆1,∆2) = ∆1.

Lemma 5. Let π be the stationary distribution of the embedded Markov chain (Qn)n≥1.
Then, for all 1 < β < β0, we have:

||π||υ = π0

(
s−1∑
k=0

(s%β)k

k!
+

(λβ/µ)s

s!(1− %β)

)
= c0 (23)

where,

% =
λ

sµ
< 1 and π0 =

[
s−1∑
k=0

(s%)k

k!
+

(
(s%)s

s!

)(
1

1− %

)]−1
Theorem 6. Let π (respectively π̃) be the stationary distribution of the embedded Markov

chain (Qn)n≥1 (respectively of the embedded Markov chain (Q̃n)n≥1). Then, for all 1 <
β < β0, we have:

||π − π̃||υ ≤ c0 c∆(1− ρ− c∆)−1

where c0 is given in (23) , c = 1 + ||π||υ.

Corollary 7. Under the conditions put forward in Theorem 6, it holds for any f such that
||f ||υ <∞ that

|πf − π̃f | ≤ ||f ||υ × SSB(β) = h(β).

Note that the bound in Corollary 7 has β as a free parameter. This give the oppor-
tunity to minimize the right hand side of the inequality in Corollary 7 with respect to β.
For given %, this leads to the following optimization problem.

min
β∈B

h(β)

s.t. ∆(β) <
1− ρ(β)

c(β)
.

By inserting ε > 0 small, all inequalities can be made strict and in the above optimization
problem can be solved using any standard technique.
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3 Numerical Example
In this section we will apply our bound put forward in Theorem 6.

3.1 Approximation Algorithm

In this subsection we elaborate an algorithm which allows us to get the domain of
the approximation and to determine the error on the stationary distribution due to the
approximation.

INITIALISATION: Definition of the inputs ;
The arrival mean rate λ;
Number of the servers s ≥ 2;
The service mean rate µ;

BEGIN
STEP 1

Verification of the stability;
IF λ/sµ ≥ 1 THEN

the system is unstable;
Exit;

ELSE

Calculate β0 = 2µ2

λ(λ+µ)
;

END

END
STEP 2

Determine [βmin, βmax] ⊂]1, β0[ such that ∆ <
1− ρ
c

;

END
STEP 3

Determine βopt ∈ [βmin, βmax] which give the minimal error of the
approximation ||π − π̃||υ;
With;

||π − π̃||υ ≤ c0 c∆(1− ρ− c∆)−1;

END
With;

ρ =
1

β
+

2λ(β − 1)

β(λ+ µ)
+
λ(β − 1)2

β(2µ+ λ)
;

∆ =

∫ ∞
0

(
1 + (β − 1)e−µt

)
|H − Eλ|(dt);

c = 1 + c0;

c0 = ||π||υ = π0

(
s−1∑
k=0

(s%β)k

k!
+

(λβ/µ)s

s!(1− %β)

)
;

π0 =

[
s−1∑
k=0

(s%)k

k!
+

(
(s%)s

s!

)(
1

1− %

)]−1
;

END.
Algorithm 1: Error of ||π − π̃||υ

3.2 Numerical Validation

The primary objective of this subsection is to compare our expected approximation
error against results obtained from simulations. For this, we implement the algorithm 1
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and simulator on a concrete case. Indeed, we apply the algorithm 1 to determine the made
error (on stationary distribution) due to the approximation (when the approximation is
possible) as well as the norm from which the error is obtained. This norm will be intro-
duced into the simulator to simulate an error (on stationary distribution) with respect to
the same norm.

For the simulation of the error, we used the discrete events approach and elaborated
the program in the Matlab environment according to the following steps :

1. Simulate the stationary distribution π̃ = (π̃i, i ≥ 0);
2. Simulate the stationary distribution π = (πi, i ≥ 0);

3. Calculate
∑
i≥0

βi|πi − π̃i|.

We present numerical examples of M/M/s queues with perturbed arrival processes.
In each case, ||π − π̃||υ is compared with the error given by the simulator.

To illustrate the application of Corollary 7 to a particular performance function, we
take f(s) = s the identical mapping. In words, we are interested in the effect of perturbing
the arrival processes on the mean queue length. It is worth noting that in this case

||f ||υ =
1

ln(β)
β−

1
ln(β) .

Example 1: In the first example, the independent and identically distributed interar-
rival times of the M/M/s queue are perturbed by randomly inserting a few exponentially
distributed intervals. The perturbed queue can be modelled by a GI/M/s queue having
hyperexponentially distributed inter-arrival times with density

h(x) = pλ1e
−λ1x + (1− p)λ2e

−λ2x, x ≥ 0, (24)

Thus, a proportion p of inter-arrival times is exponentially distributed with mean λ−11 and
a proportion (1 − p) is exponentially distributed with mean λ−12 . Setting the mean of
the inter-arrival times with distribution (24), pλ−11 + (1− p)λ−12 , equal to the fixed mean,
λ−1. Note that as λ1 approaches λ, p approaches 1 and the hyperexponential distribution
approaches an exponential distribution with rate λ.

Hence, we may conclude that it’s possible to determine approximately the character-
istics of hyperexponential/M/s system using the results of the M/M/s system.

Let us choose, for example: λ = λ1 = 1.5, λ2 = 1.3, µ = 3, s = 2 and p = 0.95. The
approximation domain has been determined:

β ∈ [βmin, βmax] = [1.0340, 2.4429]

So, we can give an idea about the error due to the approximation on the stationary
distribution from its curve in function of β (Figure 1).
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FIG. 1 − Error in function of β.

We obtain the smallest error, for β = βopt = 1.3913, and then the algorithm 1 gives the
error due to the approximation on the stationary distribution of the number of customers
such that

||π − π̃||υ =
∑
i≥0

(1.3913)i|π(i)− π̃(i)| ≤ SSB(1.3913) = 0.2795

similarly, we have

p βmin βmax βopt ||π − π̃||υ Simulated p βmin βmax βopt ||π − π̃||υ Simulated
error error

0.90 1.13 18.51 2.99 0.3053 0.0198 0.90 1.34 9.80 2.83 1.1332 0.0675
0.91 1.12 19.32 2.98 0.2674 0.0178 0.91 1.30 10.68 2.82 0.9243 0.0604
0.92 1.10 20.20 2.97 0.2315 0.0157 0.92 1.25 11.66 2.80 0.7511 0.0532
0.93 1.09 21.17 2.97 0.1974 0.0137 0.93 1.21 12.76 2.79 0.6053 0.0463
0.94 1.08 22.24 2.96 0.1649 0.0117 0.94 1.18 14.01 2.77 0.4808 0.0394
0.95 1.06 23.44 2.95 0.1341 0.0097 0.95 1.14 15.47 2.76 0.3733 0.0326
0.96 1.05 24.83 2.94 0.1047 0.0078 0.96 1.11 17.21 2.75 0.2795 0.0260
0.97 1.04 26.47 2.94 0.0767 0.0058 0.97 1.08 19.35 2.73 0.1970 0.0193
0.98 1.03 28.50 2.93 0.0500 0.0039 0.98 1.06 22.17 2.72 0.1239 0.0128
0.99 1.02 31.32 2.92 0.0244 0.0019 0.99 1.03 26.31 2.71 0.0586 0.0064

TAB. 1 − Evaluating at λ1 = λ = 0.1, λ2 = 0.2, TAB. 2 − Evaluating at λ1 = λ = 0.1,λ2 = 0.5,
µ = 2 and s = 2. µ = 2 and s = 2.

p βmin βmax βopt ||π − π̃||υ Simulated p βmin βmax βopt ||π − π̃||υ Simulated
error error

0.90 1.55 6.08 2.69 2.8328 0.1234 0.90 1.89 3.71 2.55 12.2058 0.1909
0.91 1.45 6.89 2.67 2.0227 0.1098 0.91 1.66 4.54 2.53 5.1573 0.1694
0.92 1.38 7.80 2.65 1.4898 0.0965 0.92 1.51 5.38 2.51 2.9942 0.1485
0.93 1.31 8.82 2.63 1.1127 0.0836 0.93 1.40 6.31 2.49 1.9447 0.1282
0.94 1.25 10.01 2.61 0.8319 0.0709 0.94 1.32 7.39 2.47 1.3251 0.1084
0.95 1.20 11.43 2.60 0.6146 0.0586 0.95 1.25 8.69 2.45 0.9162 0.0891
0.96 1.15 13.16 2.58 0.4416 0.0464 0.96 1.18 10.31 2.44 0.6262 0.0706
0.97 1.11 15.37 2.57 0.3005 0.0346 0.97 1.13 12.45 2.42 0.4099 0.0523
0.98 1.07 18.39 2.55 0.1834 0.0228 0.98 1.08 15.46 2.41 0.2424 0.0346
0.99 1.04 23.08 2.54 0.0845 0.0113 0.99 1.04 20.40 2.39 0.1089 0.0171

TAB. 3 − Evaluating at λ1 = λ = 0.1, λ2 = 1, TAB. 4 − Evaluating at λ1 = λ = 0.1, λ2 = 2,
µ = 2 and s = 2. µ = 2 and s = 2.

So, we can give an idea about the error due to the approximation on the stationary
distribution from its curve in function of p (Figure 2). From these numerical results, it is
easy to see that, the error decreases as the probability p increases (p → 1). Besides, the
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values of the both errors (algorithmic and numeric) tend to coincide in the neighborhood
of lower bound (p → 1). This can be explain by the way that it represents the frontier
(critical value) of the stability domain.

FIG. 2 − ||π − π̃||υ in function of p. (λ1 = λ = 0.1, µ = 2 and s = 2)

For applying our bounds we compute the value for βopt that minimizes h(β). Then, we can
compute the bounds put forward in Corollary 7 for various values for p. The numerical
results are presented in the following tables

p βopt |πf − π̃f | Simulated p βopt |πf − π̃f | Simulated
error error

0.90 2.99 0.9128 0.0592 0.90 2.83 3.2070 0.1910
0.91 2.98 0.7969 0.0530 0.91 2.82 2.6065 0.1703
0.92 2.97 0.6876 0.0466 0.92 2.80 2.1031 0.1490
0.93 2.97 0.5863 0.0407 0.93 2.79 1.6888 0.1292
0.94 2.96 0.4881 0.0346 0.94 2.77 1.3318 0.1091
0.95 2.95 0.3956 0.0286 0.95 2.76 1.0303 0.0900
0.96 2.94 0.3078 0.0229 0.96 2.75 0.7686 0.0715
0.97 2.94 0.2255 0.0171 0.97 2.73 0.5378 0.0527
0.98 2.93 0.1465 0.0114 0.98 2.72 0.3370 0.0348
0.99 2.92 0.0712 0.0055 0.99 2.71 0.1588 0.0173

TAB. 5 − Evaluating at λ1 = λ = 0.1, TAB. 6 − Evaluating at λ1 = λ = 0.1,
λ2 = 0.2, µ = 2 and s = 2. λ2 = 0.5, µ = 2 and s = 2.

p βopt |πf − π̃f | Simulated p βopt |πf − π̃f | Simulated
error error

0.90 2.69 7.6202 0.3319 0.90 2.55 31.1248 0.4868
0.91 2.67 5.4006 0.2932 0.91 2.53 13.0480 0.4286
0.92 2.65 3.9480 0.2557 0.92 2.51 7.5154 0.3727
0.93 2.63 2.9264 0.2199 0.93 2.49 4.8423 0.3192
0.94 2.61 2.1713 0.1850 0.94 2.47 3.2730 0.2677
0.95 2.60 1.5980 0.1524 0.95 2.45 2.2447 0.2183
0.96 2.58 1.1393 0.1197 0.96 2.44 1.5279 0.1723
0.97 2.57 0.7723 0.0889 0.97 2.42 0.9920 0.1266
0.98 2.55 0.4677 0.0581 0.98 2.41 0.5842 0.0834
0.99 2.54 0.2146 0.0287 0.99 2.39 0.2603 0.0409

TAB. 7 − Evaluating at λ1 = λ = 0.1, TAB. 8 − Evaluating at λ1 = λ = 0.1,
λ2 = 1, µ = 2 and s = 2. λ2 = 2, µ = 2 and s = 2.
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FIG. 3 − |πf − π̃f | in function of p. (λ1 = λ = 0.1, µ = 2 and s = 2)

Example 2: In this exemple we examine the robustness of the M/M/s queueing model
to predict accurately the operating characteristics of queues with inter-arrival times are
perturbed by slightly ε. Such as,

λ̃ = λ+ ε

where, λ̃−1 is the mean of the inter-arrival times of the perturbed queue.

In a similar manner, the mapping h(β) is minimized at βopt. The numerical results
are presented in Table 9, where the symbol × indicates that our bounds are not applicable.

ε βmin βmax βopt ||π − π̃||υ |πf − π̃f |
Bound Simulated error Bound Simulated error

0.01 1.04 4.04 1.60 0.1680 0.0072 0.2688 0.0115
0.02 1.07 3.68 1.61 0.3872 0.0145 0.6234 0.0233
0.03 1.11 3.37 1.63 0.6842 0.0221 1.1152 0.0360
0.04 1.15 3.10 1.65 1.1089 0.0298 1.8297 0.0492
0.05 1.20 2.85 1.67 1.7638 0.0377 2.9455 0.0630
0.06 1.27 2.62 1.69 2.9028 0.0459 4.9057 0.0776
0.07 1.35 2.38 1.71 5.3673 0.0542 9.1781 0.0927
0.08 1.47 2.11 1.73 14.6365 0.0628 25.3211 0.1086
≥0.09 × × × × × × ×

TAB. 9 − Evaluating at λ = 1, µ = 3 and s = 6.

Figure 4 give the error due to the approximation in function of ε, From these numerical
results, it is easy to see that, the error increases as the ε increases.

FIG. 4 − Bound in function of ε.
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Jiajian Jiang1 He Ping1,∗ Kaitai Fang1
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Abstract Finding a discrete approximation to a given continuous distribution is often requested in
various fields, such as decision analysis and resampling procedure. A typical criterion for the accuracy
of a discrete approximation is that it preserves as many moments of the original distribution as possible.
In this paper we focus on the discrete approximation to the arcsine distribution. Representative points
obtained by number-theoretic method (RPs-NTM) are used to construct the discrete approximation
to the arcsine distribution. We find and prove a surprising property that the discrete approximation
constructed by RPs-NTM have all the same moments as the arcsine distribution, if the number of points
is larger than the order of moment. In addition, another type of representative points determined in
the sense of minimizing mean squared error (RPs-MSE) is also considered as an approximation. The
performance of the discrete approximations based on RPs-NTM and RPs-MSE are evaluated and
compared. Results show that RPs-NTM is better than RPs-MSE as the approximation of arcsine
distribution.

Keywords Arcsine distribution, Representative points, Resampling

1 Introduction
Random variable X has the standard arcsine distribution (arcsine distribution for

short) if X has probability density function given by

f(x) =
1

π
√
x(1− x)

, 0 ≤ x ≤ 1. (1)

It’s corresponding cumulative distribution function is equal to

F (x) =
2

π
arcsin(

√
x), 0 ≤ x ≤ 1. (2)

Actually, the arcsine distribution is a special case of the beta distribution with left and
right parameters α = β = 1

2
. The arcsine distributions occur naturally in statistical

communications theory and have played an important role in the study of Brownian motion
and prime numbers. In Lee [17] and Middleton [20], the amplitude of a periodic signal in
thermal noise and the limiting spectral density function of a highindex-angle modulated
carrier are modeled with arcsine distribution. In addition, the arcsine distribution is useful
in the study of the fluctuations of random walks (Feller [10]) and Arcsine Law in Brownian
motion which was first proved by Lévy in [18] and [19]. Besides, the arcsine distribution
has been widely used and accepted in physical and financial stochastic model, such as,
economic default time and occupation times for the pricing of options are modeled by
arcsine distribution (see e.g. [13, 21]).
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For many complex probabilistic problems involving continuous random variables, it
is rare to find a closed-form solution. Consequently, it is often required that a given
continuous probability distribution is approximated by a discrete distribution. Specifically,
for a given continuous random variable X with pdf f(x) and cdf F (x), we construct a
discrete random variable ξ with cdf G(x) such that G(x) preserves the properties of F (x)
as much as possible. There are many ways to construct such random variable ξ. We
can simply choose a set of random sample {xi, i = 1, · · · , n} and let P (ξ = xi) = 1/n, i =
1, · · · , n. Efron [5] proposed to use this ξ in the bootstrap. In general, denote a support set
of ξ as {ξ1, ξ2, ..., ξn} and the related probability mass distribution as P (ξ = ξi) = pi, i =
1, . . . , n. Several methods for constructing a discrete approximation are proposed, such
as “Bracket-Median” method (Clemen [2]), “25-50-25”method (Keefer and Bodily [16]),
“Number-Theoretic” method (Fang and Wang [8]) and “Mean Square Error” method (Cox
[3] and Fang and He [7]). In the procedure of “Bracket-Median method”, one chooses a
number of points n and divides the continuous cumulative probability distribution F (x)
into n equally probable intervals. And then each interval is represented by the point
corresponding to the median of the interval and each point is assigned probability 1/n.
The “25-50-25” method including three RPs (representative points) which assigns the
weights 0.250, 0.500, and 0.250 to 10th(q10), 50th (q50), and 90th (q90) percentiles of F (x).
Representative points generated by Number-Theoretic method are selected by using the
percentiles ξi = F−1(qi), i = 1, . . . , n, where F−1(x) is the inverse function of F (x) and
qi = 2i−1

2n
. For the “Mean Square Error” method, RPs are optimally selected in the sense

of providing a minimum mean squared error approximation to the original continuous
distribution. For a comprehensive review of a number of different discrete approximation
methods, the reader can refer to Hammond and Brickel [14], Smith[22] and Fang et.al [9].

In this paper, we focus on the discrete approximation for the arcsine distribution and
its application in simulation. We discover a surprising property of the arcsine distribution
that the discrete distribution constructed by RPs-NTM has the same moments of all orders
as the arcsine distribution if the number of points, n, is larger than the order of moment,
that means, RPs-NTM provides the best approximation for the arcsine distribution in the
sense of matching moments.

In addition, we also obtain a set of RPs-MSE which are optimal on the criterion of
minimum mean squared error between discrete approximation and the arcsine distribution.
The two different discretization methods naturally raise the question as to which approx-
imation for the arcsine distribution is better in practice and simulation. We compare the
two approximation from two aspects: L2 distance between F (x) and Fξ(x) and statistical
inference by resampling. The results show that the discrete approximation constructed by
RPs-NTM has a better performance than the approximation by RPs-MSE.

The next section presents an extraordinary property of the arcsince distribution. We
give a brief introduction of representative points by MSE criterion (RPs-MSE) and propose
an algorithm for generating RPs-MSE for the arcsine distribution in Section 3. Section 4
gives comparisons between RPs-NTM and RPs-MSE. Finally, the paper is concluded in
section 4.

2 An extraordinary property
As we introduced in section 1, the arcsine distribution is a special case of beta dis-

tribution, X ∼ Beta(0.5, 0.5). Its pdf and cdf are given in (1) and (2), respectively. The
arcsine distribution is symmetric at x = 1

2
. The density curve steeply rises towards infinity

as x approaching to 0 and 1 and tends to be flatter around the center x = 1
2

(see Figure
1).
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Figure 1: Probability density function of the arcsine distribution

The approximate discrete random variable ξ constructed by RPs-NTM has been in-
troduced in section 1. It takes P (ξ = ξj) = 1

n
, j = 1, . . . , n, where

ξj = F−1(qj), qj =
2j − 1

2n
, j = 1, . . . , n. (3)

It is easy to find, for arcsine distribution, F−1(x) = sin2(πx
2

) and the representative points
are

ξj = sin2(
2j − 1

2n
· π

2
), j = 1, 2, ..., n. (4)

The following theorem derives a surprising approximation property when using RPs-
NTM to approximate the arcsine distribution.

Theorem 1. Let random variable X follow the standard arcsine distribution and let ξ be
an approximate random variable defined by P (ξ = ξj) = 1

n
, where ξj = sin2( 2j−1

2n
· π
2
), j =

1, 2, ..., n. Then X and ξ share all the same moments as follows

µm = E(Xm) = E(ξm) =

m∏
j=1

2j − 1

2j
, m = 1, 2, ..., n > m. (5)

Proof: The mth moment of the arcsine distribution is easy to find

E(Xm) =

∫ 1

0

xm
1

π
√
x(1− x)

dx =

∫ 1

0

2u2m

π
√

1− u2
du =

∫ π
2

0

2

π
sin2m(θ)dθ =

m∏
j=1

2j − 1

2j
.

The mth moment of the approximate distribution is given by

E(ξm) =
1

n

n∑
j=1

sin2m(
π

2

2j − 1

2n
).

To prove the theorem, we need to show

1

n

n∑
j=1

sin2m(
π

2

2j − 1

2n
) =

m∏
j=1

2j − 1

2j
. (6)
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Let θ = π
2
2j−1
2n

,

E(ξm) =
n∑
j=1

1

n
sin2m(

π

2

2j − 1

2n
) =

1

n

n∑
j=1

sin2m(θ)

=
1

n

n∑
j=1

[
eiθ − e−iθ

2i
]2m

=
1

n

n∑
j=1

(−1)m(2−2m)
2m∑
k=0

(
2m

k

)
(−1)k(eiθ)2k−2m

=
1

n
(−1)m(2−2m)

2m∑
k=0

(
2m

k

)
(−1)k

n∑
j=1

ei(
k−m
n ·

π
2 )(2j−1). (7)

Note that in the right hand side of the above equation we have

n∑
j=1

(
ei(

k−m
n ·

π
2 )
)(2j−1)

=

{
n, if k = m,
y(1−y2n)

1−y2 , if k 6= m.
(8)

where y = ei(
k−m
n ·

π
2 ). Moreover, 1 − y2n = 1 − ei(k−m)π = 2 when the value of (k −m) is

odd, otherwise 1− y2n = 0.

Let k−m
n
· π
2

= απ, we have y = eiαπ and

y

1− y2
=

eiαπ

1− ei2απ
=

2i(sinαπ)

[1− cos(2απ)]2 + [sin(2απ)]2
. (9)

From (9), for k 6= m and n > m we have that

real part of

n∑
j=1

(
ei(

k−m
n ·

π
2 )
)(2j−1)

= 0 and (10)

imaginary part of

n∑
j=1

(
ei(

k−m
n ·

π
2 )
)(2j−1)

= −imaginary part of

n∑
j=1

(
ei(

m−k
n ·

π
2 )
)(2j−1)

(11)

Therefore, from (8)-(11), we have

2m∑
k=0

(
2m

k

)
(−1)k

n∑
j=1

(
ei(

k−m
n ·

π
2 )
)(2j−1)

= (−1)m
(

2m

m

)
· n+

m−1∑
k=0

(
2m

k

)
(−1)k

n∑
j=1

(ei(
k−m
n )·π2 )(2j−1)

+
2m∑

k=m+1

(
2m

k

)
(−1)k

n∑
j=1

(ei(
k−m
n )·π2 )(2j−1)

= (−1)m
(

2m

m

)
n. (12)
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Substituting (12) into (7), we obtain

E(ξm) =
1

n
(−1)m(2−2m)(−1)m

(
2m

m

)
n =

(
2m

m

)
(2−2m)

=
1× 3× 5× · · · × (2m− 1)

22m ×m!

=
m∏
j=1

2j − 1

2j
= E(Xm).

According to theorem 1, we can conclude that RPs-NTM provides the best discrete
approximation for arcsine distribution in the sense of matching moments.

3 RPs-MSE of the arcsine distribution
Recently, Fang, Zhou and Wang [9] propose to use RPs-MSE, RPs-NTM and Monte

Carlo method in resampling to construct approximate distributions for a given continuous
distribution. They compare the three kind of approximate distributions to the standard
normal distribution and find that in most cases RPs-MSE has the best performance when
F (x) is a normal distribution. However, from Theorem 1 we can expect that, for arcsine
distribution, different conclusion on the performance of these three kinds of approximate
distributions may be found. Since, so far, there is no results on RPs-MSE of the arcsine
distribution, in this section, following Fang and He [7], we give an algorithm for generation
RPs-MSE.

A set of representative points, denoted as RPs-MSE, which is a set of points that
optimally represents a distribution in terms of mean square error (Cox [3], Bofinger[1],
Fang and He [7], Flury [11, 12]). Let X be a random variable with pdf f(x). Consider a
set of points {ξ1, · · · , ξn} where ξ1 <, · · · , < ξn and define a loss function

L(ξ1, ξ2, . . . , ξn) =
1

σ2

∫ ∞
−∞

min1≤i≤n(ξi − x)2f(x)dx, (13)

where σ is the standard deviation of X. Then, a set points {ξ∗1 , · · · , ξ∗n} is said to be
RPs-MSE of the distribution of X if it minimizes the loss function (13) for all choices of
{ξ1, · · · , ξn}.

Particularly, for a random variable X following the arcsine distribution, its variance
is 1

8
and the mean squared distance loss function (13) is given by

L(ξ1, ξ2 . . . , ξn) =
1

σ2

∫ 1

0

min1≤i≤n(ξi − x)2f(x)dx

= 8

∫ 1
2 (ξ1+ξ2)

0

(ξ1 − x)2

π
√
x(1− x)

dx + 8

∫ 1
2 (ξ2+ξ3)

1
2 (ξ1+ξ2)

(ξ2 − x)2

π
√
x(1− x)

dx

+ . . . + 8

∫ 1

1
2 (ξn−1+ξn)

(ξn − x)2

π
√
x(1− x)

dx. (14)
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For the ith (1 ≤ i ≤ n) term in the loss function (13)

8

∫ 1
2 (ξi+ξi+1)

1
2 (ξi−1+ξi)

(ξi − x)2

π
√
x(1− x)

dx =
8

π

∫ 1
2 (ξi+ξi+1)

1
2 (ξi−1+ξi)

ξ2i − 2xξi + x2√
x(1− x)

dx

=
16

π

[(
3

8
− ξi + ξ2i

)(
arcsin

(√
bi+1

)
− arcsin

(√
bi

))
−
(
ξi −

3

8
− 1

4
bi

)(
bi − b2i

) 1
2

+

(
ξi −

3

8
− 1

4
bi+1

)(
bi+1 − b2i+1

) 1
2

]
,

where

bi =

 0, i = 1,
1
2
(ξi−1 + ξi), 2 ≤ i ≤ n,

1, i = n+ 1.

Thus, RPs-MSE {ξ∗1 , · · · , ξ∗n} need to be determined by minimizing the loss function (14).

As the density function of arcsine distribution is an symmetrical function about center
1
2
, it is natural to assume that the RPs of arcsine distribution are also symmetric, i.e. ξj =

1−ξn−j+1, 1 ≤ j ≤ m+1, m = bn
2
c. So, considering the symmetric, the loss function which

is entirely determined by the first half of n points is displayed as L(ξ1, . . . , ξm). In addition,
two cases need to be dealt with respectively: when n = 2m + 1 is odd, RPs {ξ1, · · · , ξm}
is selected under the constraint of 0 < ξ1 < · · · < ξm < ξm+1 = 1

2
; when n = 2m is even,

RPs {ξ1, · · · , ξm} is determined under the constraint of 0 < ξ1 < · · · < ξm < 1
2
.

To find a set of RPs-MSE which minimizes loss function L(ξ1, . . . , ξm), we set

∂L(ξ1, . . . , ξm)

∂ξi
= 0, i = 1, . . . ,m,

and then obtain the following system of equations

(2ξi − 1)
(
arcsin

(√
bi+1

)
− arcsin

(√
bi

))
=

(
bi − b2i

) 1
2 −

(
bi+1 − b2i+1

) 1
2 , i = 1, . . . ,m. (15)

In system of equations (15), when n = 2m is even,

bi =

 0 i = 1
1
2
(ξi−1 + ξi) 2 ≤ i ≤ m

1
2

i = m+ 1,

when n = 2m+ 1 is odd,

bi =

 0 i = 1
1
2
(ξi−1 + ξi) 2 ≤ i ≤ m

1
2
(ξm + 1

2
) i = m+ 1.

To solve the system of equations (15), we adopt an iterative numerical algorithm
proposed by Fang and He [7]. The procedure is shown in Algorithm 1.

After determining the solution {ξ∗1 , . . . , ξ∗m} of system of equations (15), RPs-MSE
is the set of ξ∗ = {ξ∗1 , . . . , ξ∗m, 1 − ξ∗1 , . . . , 1 − ξ∗m} when n is even and the set of
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Algorithm 1. Iterative algorithm for solving the system of equations (15)

Step 1 Choose an appropriate initial value for ξ1 > 0. Set LP = ξ1 and RP = 1
2

such that ξ2 must
lie in the interval (LP,RP ).

Step 2 Fix ξ1, solve the first equation and obtain the value of ξ2. And then fix ξ1 and ξ2, solve the
second equation to get ξ3.

Step 3 In the same manner, fix ξi−1 and ξi, solve the ith equation and obtain the solution of ξi+1,
for i from 2 to m − 1. Thus ξm is found by fixing ξm−2 and ξm−1 and solving the second last
equation.

Step 4 Fix ξm−1, solve the last equation and find the solution of ξ
′
m.

Step 5 Let ε be the threshold of convergence (assume ε = 10−6), if

[a] |ξm − ξ
′
m| < ε, then the {ξ1, . . . , ξm} are the solution for system of equations (18).

[b] ξm < ξ
′
m − ε, then the initial value ξ1 is too small, modify LP = ξ1, ξ1 = 1

2
(LP +RP ),

go to the step 2.

[c] ξm > ξ
′
m + ε, then the initial value ξ1 is too large, modify RP = ξ1, ξ1 = 1

2
(LP +RP ),

go to the step 2.

ξ∗ = {ξ∗1 , . . . , ξ∗m, 1
2
, 1− ξ∗1 , . . . , 1− ξ∗m} when n is odd.

In addition, the associated probability of RPs-MSE is computed as

pi =

∫ bi+1

bi

f(x)dx

=

∫ bi+1

bi

1

π
√
x(1− x)

dx

=
2

π

(
arcsin

(√
bi+1

)
− arcsin

(√
bi

))
. (16)

The RPs-MSE for n ≤ 31 and related probabilities pi can be found in Jiang [15].

4 Comparisons between RPs-NTM and RPs-MSE
RPs-NTM and RPs-MSE are two types of representative points obtained by using

different optimal criteria and can be used to constitute discrete approximation to the
arcsine variate, denoted by YNTM and YMSE , respectively. In this section, we evaluate
these two discrete approximations by considering Lp F -discrepancy and statistical inference
based on resampling.

The Lp F -discrepancy is defined by Fang and Wang [8] as the Lp distance between
the original distribution F (x) and its discrete approximation, Fξ(x).

Dp(F, Fξ) =

[∫ +∞

−∞
|Fξ(x)− F (x)|p dx

] 1
p

. (17)

It has been shown that it is a very useful measurement for evaluating discrete approxima-
tion.

To compare the performance of discrete approximation constructed by RPs-NTM and
RPs-MSE, we compute the value of D2(F, FYNTM ) and D2(F, FYMSE ) for different number
of RPs n. The results are shown in Table 1. Clearly, the distribution function of YNTM is
much closer to the arcsine distribution function.

Resampling technique has been used in statistical simulation. Bootstrap method is
one of the resampling methods and was proposed by Eron in 1979 [5]. Resampling method
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Table 1: L2 distance between the approximate distribution and the arcsine distribution
n 5 10 15 20 25 30 31

D2(F, FYNTM ) 0.05807 0.02891 0.01926 0.01444 0.01155 0.00962 0.00931
D2(F, FYMSE ) 0.10376 0.08621 0.07541 0.06778 0.06204 0.05751 0.05672

takes samples from an approximate population. The bootstrap uses a sample from F (x) to
construct an approximate distribution. Fang et al.[9] proposed to use RPs-NTM and RPs-
MSE for construction of approximate distribution and found that in many cases RPs-MSE
has the best performance and RPs-NTM is not as good as RPs-MSE, but both of RPs-
NTM and RPs-MSE can significantly improve the traditional bootstrap method. For the
normal population they pointed out D2(F, FYNTM ) > D2(F, FYMSE ), but for the arcsine
distribution D2(F, FYNTM ) is smaller and may have a better performance in statistical
inference by resampling.

In the following, resampling from YNTM and YMSE are taken for estimation of the
mean, variance, skewness and kurtosis of X. It is known

E(X) =
1

2
, V ar(X) =

1

8
, Sk(X) = 0, Ku(X) = −3

2
.

Six cases with different number of representatives points n = 20, 25, 28, 29, 30, 31 are con-
sidered respectively. For each case, resampling are repeated N = 1000, 2000, 5000, 10000
times. Table 2 shows the estimation bias of four statistics by resampling form YNTM and
YMSE for n = 30. The numbers labeled with * means the winner, with the smaller ab-
solute value of bias, in the comparison. To save space, we only show the estimation bias
when n = 30. Table 3 shows the number of winner for the two approximations among
all the estimations. From the table 2 and 3, we observe that the discrete approximation
YNTM for arcsine distribution has a better accuracy in estimating the statistics in most
cases, however, the difference on accuracy between YNTM and YMSE is not very significant,
especially when the number of repetition for resampling is large.

It is worth being mentioned, in previous studies about representative points, no mat-
ter for normal distribution or t distribution or other distributions, YMSE always has the
best performance in approximation and resampling. However, in the case of the arcsine
distribution, because of its special property (Theorem 1), YNTM often achieves the better
performance than YMSE .

Table 2: n=30, estimation bias by resampling
Category 1000 2000 5000 10000

Mean YNTM -0.002032* 0.000556* -0.001091* 0.000265*
YMSE 0.004421 -0.001554 -0.001466 -0.000752

Variance YNTM -0.000343* 0.000240 -0.000004* -0.000063*
YMSE -0.001102 0.000162* -0.000057 0.000091

Skewness YNTM 0.010411* -0.001817* 0.006044 -0.000351*
YMSE -0.020095 0.007899 0.005315* 0.003085

Kurtosis YNTM 0.117548 0.111009 0.110980 0.111487
YMSE 0.117018* 0.109467* 0.110104* 0.108305*

The * indicates the winner in each column of each statistic
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Table 3: Number of winner of statistical estimation
YNTM YMSE

Mean 15 9
Variance 17 7
Skewness 13 11
Kurtosis 8 16

Total 53 43

5 Conclusion
This paper mainly concerns the two type of representative points (RPs-NTM and

RPs-MSE) for the arcsine distribution. We discover and prove a special property of rep-
resentative points selected by Number-Theoretic method for the arcsine distribution: The
discrete approximation constructed by RPs-NTM shares all the same moments with the
arcsine distribution. Due to this property, RPs-NTM has the best representative of the
arcsine distribution in the sense of L2 discrepancy. Another type of representative points
are determined in term of minimizing mean square error (RPs-MSE). Our statistical com-
parisons show that RPs-NTM is often better than RPs-MSE as the discrete approximation
to arcsine distribution.
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Abstract The spatial econometrics enable us to decompose the marginal effects of the concerning
variables into direct and indirect effects. LeSage and Pace [9] proposed the summary measures for them
and showed that the Bayesian approach makes us implement the statistical inference for the measures.
This study examines the productivity of roads in Japan from a viewpoint of the spatial econometrics
using this technique and argues the direct and indirect effects from a Bayesian point of view. From
the empirical results, we can find that the marginal effect is underestimated if the indirect effect is
ignored.

Keywords Direct and indirect effects; Markov chain Monte Carlo method; Spatial Durbin model

1 Introduction
The spatial econometrics enable us to decompose the marginal effects of the concern-

ing variables into direct and indirect effects. LeSage and Pace [9] proposed the summary
measures for them and showed that the Bayesian approach makes us implement the statis-
tical inference for the measures. This study examines the productivity of roads in Japan
from a viewpoint of the spatial econometrics using this technique and argues the direct and
indirect effects from a Bayesian point of view. The road is widely known as typical example
of public good. Since one of the purpose of subsidy is to modify the under-provision of
public goods, it is important to evaluate the indirect effect, so-called spillover effect.

The rest of this paper is organized as follows. In the next section, we briefly explain
the spatial econometric model, which we will use in the decomposition of the marginal
effects. Section 3 provides the empirical results, which examines the productivity of roads
in Japan. Section 4 gives some concluding remarks.

2 Model
In a simple linear regression model (LRM),

yi = α+ xiβ + ϵi, ϵi ∼ N (0, σ2), (1)

where yi is a dependent variable and xi = (xi1, xi2, . . . , xiK) is a covariates,
∂yi
∂xik

= βk,

where βk is the kth element of β, and
∂yi
∂xjk

= 0 (i ̸= j). However, if we focus on a spatial
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econometric model, not only
∂yi
∂xik

̸= βk but also
∂yi
∂xjk

̸= 0 in general. Therefore, it was

difficult to analyze the partial derivatives in the spatial models.

To overcome this problem, LeSage and Pace [9] proposed the summary measures
for the partial derivatives and decomposed them into direct and indirect effects. This
approach becomes popular and the standard method for the spatial analyses (see, for
example, LeSage and Dominguez [8]). Therefore, in this section, we explain this method
using the general spatial model named spatial Durbin model (SDM).

Let y = (y1, y2, . . . , yn)
′, X = (x′

1,x
′
2, . . . ,x

′
n)

′ and W be an n × n spatial weight
matrix, respectively. Then, the SDM is expressed as follows:

y = ρWy + αιn +Xβ +WXγ + ϵ, ϵ ∼ N (0, σ2In),

= ρWy + Zθ + ϵ, ϵ ∼ N (0, σ2In), (2)

where ιn is an n × 1 unit vector, γ is an k × 1 parameter vector, Z = [ιn X WX],
θ = (α β′ γ′)′, and In is an n× n unit matrix, respectively.

To introduce the summary measures for the partial derivatives, let us introduce the
matrix Sk(W) = (In − ρW)

−1
(βkIn+γkW) to construct the direct and indirect effect for

the kth variable from the SDM model (2). Then,
∂yi
∂xjk

= Sk(W)ij , where Sk(W)ij is the

ijth element of Sk(W). Therefore, LeSage and Pace [9] proposed the summary measures
for total, direct and indirect effects as follows:

M̄(k)total = n−1ι′nSk(W)ιn, (3)

M̄(k)direct = n−1tr(Sk(W)), (4)

M̄(k)indirect = M̄(k)total − M̄(k)direct, (5)

where M̄(k)total is the total effect, M̄(k)direct is the direct effect, and M̄(k)indirect is the
indirect effect, respectively. Note that the summary measures take the average for these
effects. However, it is difficult to judge the statistical significance for these effects directly,
because these measures are the non-linear function of the parameters. As shown by Gelfand
et al. [4], Markov chain Monte Carlo (MCMC) methods can yield valid inference on non-
linear functions of the parameters such as the direct and indirect impacts in (4) and
(5). All that is required is evaluation and storage of the draws reflecting the non-linear
combinations of the parameters. Therefore, we utilize the MCMC to examine the direct
and indirect effects (see LeSage and Pace [9]).

Then, to proceed the Bayesian inference, we will introduce the likelihood function for
(2). The likelihood function of (2) is written as follows:

L(y|X,W,θ, σ2, ρ) =
1

√
2πσ2

n |In − ρW| exp
{
− e′e

2σ2

}
, (6)

where e = y − ρWy − Zθ.

Given the likelihood function (2), the prior distributions are required to proceed the
posterior inference. Therefore, we assume the following independent prior distributions.

π(θ, σ2, ρ) = π(θ)π(σ2)π(ρ). (7)

As the prior distribution for each parameter, we assume the following proper prior distri-
butions.

θ ∼ N (θ0,Σ0), σ2 ∼ IG(ν0/2, λ0/2), ρ ∼ U(1/λmin, 1/λmax),
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where IG(a, b) denotes an inverse gamma distribution with parameters a and b, and U(a, b)
denotes an uniform distribution with an interval between a and b. λmin and λmax are the
minimum and maximum eigenvalues of W. As shown in Sun et al. [10], it is well known
that λ−1

min < 0 and λ−1
max > 0 and that ρ must lie in the interval. Therefore, we restrict

the prior space as ρ ∈ (λ−1
min, λ

−1
max). In addition, it is also well known that the maximum

eigenvalue of a row-standardized weight matrix is one. Therefore, we set λmax = 1.

Given a prior density in (7) and the likelihood function in (2), the joint posterior
distribution can be expressed as:

π(θ, σ2, ρ|y,X,W) ∝ π(θ)π(σ2)π(ρ)L(y|X,W,θ, σ2, ρ). (8)

We can now employ MCMC methods. The Markov chain sampling scheme can be
constructed from the full conditional distributions (FCD) of θ, σ2 and ρ. Thus, we derive
the FCD for each parameter. The FCD for θ is expressed by

θ|y,Z,W, σ2, ρ ∼ N (θ̂, Σ̂), (9)

where Σ̂ =
(
σ−2Z′Z+Σ−1

0

)−1
and θ̂ = Σ̂

{
σ−2Z′ (y − ρWy) +Σ−1

0 β0

}
. Therefore, the

standard Gibbs sampler is utilized to draw the posterior (see Gelfand and Smith [5]).

The FCD for σ2 is given by

σ2|y,Z,W,θ, ρ ∼ IG(ν̂/2, λ̂/2), (10)

where ν̂ = n+ ν0 and λ̂ = e′e+ λ0. This is also drawn by the Gibbs sampler.

The FCD for ρ is expressed as

π(ρ|y,Z,W,θ, σ2) ∝ |In − ρW| exp
{
− e′e

2σ2

}
. (11)

However, it is difficult to draw the posterior from this FCD directly. Thus, we utilize the
random walk Metropolis-Hastings (MH) algorithm (see Holloway et al. [6]).

3 Empirical Results
Before examining empirics, we explain the dataset used in this paper. We utilize

prefecture-level data in fiscal year 2010 in Japan1. The amount of road traffic, y, road
length, x1, and congestion rate, x2, are derived from the The FY2010 Road Traffic Census.
Since we consider the operation rate of the capital, we include congestion rate of the road
in our production function. As the spatial weight matrix W, we use the one, which is
proposed by Kakamu et al. [7].

We used the following hyper-parameters to run the MCMC algorithm.

θ0 = 0, Σ0 = 100× I2K+1, ν0 = 2.0, λ0 = 0.01.

We perform the MCMC procedure by generating 1,010,000 iterations and discarding the
first 10,000 iterations. Of the remaining draws, we keep every 100th draw to obtain the
posterior statistics for the parameters. All the results reported here are generated using
Ox version 7.0(OS X 64/U) (see Doornik [3]).

Table 1 provides the estimation result of the SDM. To compare the result with the
standard LRM, we also report the estimation result of the LRM in (1). α is the constant

1Since the survey was conducted on autumn, the results were not affected by the huge earthquake on March
2011.
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Table 1: Estimation Results
SDM LRM

MEAN 95%CI MEAN 95%CI
α -7.725 -10.055 -5.374 -8.395 -10.722 -6.080
β0 1.118 0.956 1.282 1.091 0.933 1.244
β1 2.174 1.769 2.580 2.332 1.967 2.693
γ0 -0.245 -0.501 0.030
γ1 -0.249 -0.743 0.268
ρ 0.274 -0.041 0.554
σ2 0.045 0.029 0.068 0.047 0.031 0.071

Note: MEAN and 95%CI stand for the posterior mean and 95% credible
interval, respectively.

Table 2: Direct and Indirect Effects
VARIABLE 1 VARIABLE 2

MEAN 95%CI MEAN 95%CI
Direct Effect 1.334 1.037 1.709 2.214 1.801 2.623
Indirect Effect 3.310 2.047 5.373 0.504 -0.172 1.538
Total Effect 4.644 3.120 7.039 2.718 1.871 3.940

term. β1 and β2 represent the coefficients of road capital and its operation rate, respec-
tively. We also report γ1, γ2 and ρ, that represent the spatial dependency parameter. β1 is
estimated as positive and the 95% credible interval for the coefficient does not include zero.
We find that the production function of road service satisfied the ordinary assumption. β2

is also reported as positive value. We confirm that higher operated road had higher pro-
ductivity. On the other hand, γ1 and γ2 is estimated as negative, but the 95% credible
interval for the coefficient include zero. The 95% credible interval for ρ also include zero.
Both output and input of neighboring prefecture do not affect the road productivity of
home prefecture.

The direct and indirect effects are reported in Table 2. The direct effect of capital
on road productivity is estimated positive and the 95% credible interval does not include
zero. The indirect effect of capital is also estimated positive and its 95% credible interval
does not include zero. The indirect effect is larger than direct effect because our method
“cumulated spillover” of all regions2.

The direct effect of operation rate is positive and the 95% credible interval does not
include zero. Note that the credible interval of indirect effect of operation rate include zero.
This result shows that there is direct effect of the operation rate on road productivity, but
not spillover effect.

4 Conclusions
In this paper, we estimated the spillover effect on road productivity using a spatial

regression model. We found the first evidence of spillover effects on road production
function at the prefecture level in Japan. In particular, we observed that the indirect
effects, so-called spillovers, have larger impact on the road productivity than the direct
effect. The road is widely known as a public good. When the local governments put a
low value on, or sometimes ignore, the effect of spillover, the road is under-provided. The

2LeSage and Dominguez (2012) made a mention of this point.

Kazuhiko Kakamu,  Hideo Yunoue

171



national subsidy of road construction is likely to modify the under provision of road capital
in Japan.
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Abstract Big networks express various large-scale networks in many practical areas such as comput-
er networks, internet of things, cloud computation, manufacturing systems, transportation networks,
and healthcare systems. This paper analyzes such big networks, and applies the mean-field theory and
the nonlinear Markov processes to set up a broad class of nonlinear continuous-time block-structured
Markov processes, which can be applied to deal with many practical stochastic systems. Firstly, a
nonlinear Markov process is derived from a large number of interacting big networks with symmetric
interactions, each of which is described as a continuous-time block-structured Markov process. Second-
ly, some effective algorithms are given for computing the fixed points of the nonlinear Markov process
by means of the UL-type RG-factorization. Finally, the Birkhoff center, the Lyapunov functions and
the relative entropy are used to analyze stability or metastability of the big network, and several in-
teresting open problems are proposed with detailed interpretation. We believe that the results given
in this paper can be useful and effective in the study of big networks.

Keywords Nonlinear Markov process; Big network; Mean-field theory; RG-factorization; Fixed
point; Stability; Metastability; Lyapunov function; Relative entropy

1 Introduction
In this paper, we consider a large number of interacting big networks with symmetric

interactions, each of which is described as a continuous-time block-structured Markov
process, which can be applied to deal with many practical stochastic systems. As the
number of nodes goes to infinite, the interactions between any two subsets of the big
networks become negligible or are asymptotically independent, and the overall effect of
the interactions can be replaced by an empirical measure under the mean-field setting.
Based on this, the evolution of each big network is expressed as a time-inhomogeneous
continuous-time Markov process, which leads to that the transient performance of any big
network can be given by a system of ordinary differential equations, and its associated
steady-state performance is able to be computed by any fixed point, which satisfies a
system of nonlinear equations.

The purpose of this paper is to develop the mean-field computational theory both for
performance evaluation and for performance optimization. During the last three decades
considerable attention has been paid to studying the mean-field theory of big networks.
Readers may refer to recent publications for the mean-field theory of stochastic systems,
among which are Dawson [17], Shiga and Tanaka [59], Sznitman [60], Dawson and Zheng
[18], Duffield and Werner [22], Duffield [21], Kipnis and Landim [38], Liggett [49], Le
Boudecet at al. [43], Bordenave at al. [9], Gast and Bruno [31], Kolokoltsov at al. [41],
Gast at al. [32], and Li [45].

∗This work is partly supported by the National Natural Science Foundation of China under grant
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During the last two decades the mean-field theory has been applied to studying some
practical networks, such as, queue systems, computer networks, manufacturing systems
and transportation networks. Readers may refer to, for example, Baccelli et al. [3],
Vvedenskaya et al. [64], Vvedenskaya and Suhov [65], Mitzenmacher [53], Turner [62],
Delcoigne and Fayolle [19], Karpelevich and Rybko [37], Oseledets and Khmelev [56],
Bobbio et al. [8], Benaim and Le Boudec [7], Antunes et al. [2], Gast and Bruno [30],
Hayden et al. [36], Fricker et al. [28], Baccelli et al. [4], Li et al. [46, 47], Li [48], and
Fricker and Gast [27].

Nonlinear Markov processes play an important role in the study of big networks.
Important examples include Rybko and Shlosman [58], Benaim and Le Boudec [7], Frank
[25], Kolokoltsov [39], Gast and Bruno [31], Kolokoltsov [40], Kolokoltsov at al. [41],
Muzychka and Vaninsky [54], Dupuis and Fischer [23], Gast at al. [32], Vaninsky et al.
[63], Budhiraja et al. [14, 15], and Budhiraja and Majumder [16].

Metastability is an ubiquitous and important phenomenon of the dynamical behavior
of communication networks, e.g., see Gibbens at al. [33], Antunes et al. [1, 2] and Tibi
[61]. For metastability in Markov processes, readers may refer to Galves at al. [29], Bovier
et al. [12, 13], Olivieri and Vares [55], Freidlin and Wentzell [26], Bovier [10, 11], den
Hollander [20], and Beltran and Landim [5].

The main contributions of this paper are threefold. The first one is to set up a broad
class of nonlinear continuous-time block-structured Markov processes when applying the
mean-field theory to analyze a large number of interacting big networks with symmetric
interactions, each of which is described as a continuous-time block-structured Markov
process. The second one is to propose some effective algorithms for computing the fixed
points of the nonlinear Markov processes by means of the UL-type RG-factorization, and
show for some big networks that there possibly exist multiple fixed points, which lead to
the metastability. The third one is to use the Birkhoff center, the Lyapunov functions and
the relative entropy to analyze either stability or metastability of the big networks, and
to give several interesting open problems with detailed interpretation. Based on this, this
paper provides some new computational lines in the study of big networks. We believe
that the results given in this paper can be useful and effective in performance evaluation
and optimization of the big networks.

The remainder of this paper is organized as follows. In Section 2, we derive a class
of nonlinear Markov processes through an asymptotic analysis of the weakly interacting
big networks, in which each big network evolves as a continuous-time block-structured
Markov process. In Section 3, we provide some effective algorithms for computing the
fixed points of the system of ordinary differential equations. In Section 4, we discuss the
Birkhoff center of the mean-field dynamic system, and apply the Lyapunov functions and
the relative entropy to study the stability or metastability of the big network. Also, we
provide several interesting open problems with detailed interpretation. Some concluding
remarks are given in the final section.

2 Nonlinear Markov Processes
In this section, we derive a class of nonlinear Markov processes through an asymptotic

analysis for a collection of weakly interacting big networks, in which each big network
evolves as a continuous-time block-structured Markov process, which can be applied to
deal with many practical stochastic systems.

To be able to discuss a system of big networks, we assume that any individual big net-
work evolves as a continuous-time block-structured Markov process X whose infinitesimal
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generator is given by

Q =


Q0,0 Q0,1 Q0,2 Q0,3 · · ·
Q1,0 Q1,1 Q1,2 Q1,3 · · ·
Q2,0 Q2,1 Q2,2 Q2,3 · · ·
Q3,0 Q3,1 Q3,2 Q3,3 · · ·
...

...
...

...

 , (1)

where the size of the matrix Qj,j is mj for j ≥ 0, and the sizes of other matrices can
be determined accordingly. It is easy to see that the matrix Qj,j is also the infinites-
imal generator of a continuous-time Markov process with mj states for j ≥ 0. We
assume that the continuous-time Markov process Q is irreducible, aperiodic and pos-
itive recurrent, and its state space may be expressed as a two-dimensional structure:
Ω = {(k, j) : k ≥ 0, 1 ≤ j ≤ mk}. See Li [44] for more details.

From the continuous-time block-structured Markov chain X , the system of N weakly
interacting big networks is described as an XN -valued Markov process, where the states
of the N big networks are denoted as X1,N (t), X2,N (t), . . ., XN,N (t), respectively.

Let XN (t) =
(
X1,N (t) , X2,N (t) , . . . , XN,N (t)

)
. Then the empirical measure of the

system of N big network system is given by

µN (t) =
1

N

N∑
i=1

δXi,N (t), (2)

where δx is the Dirac measure at x.

We denote by P (Ω) the space of probability vectors on the state space Ω, which
is equipped with the usual topology of weak convergence. If p ∈ P (Ω), we write p =
(p0, p1, p2, . . .), where the size of the vector pj is mj for j ≥ 0. At the same time, it
is clear that µN (t) ∈ P (Ω) is a random variable for t ≥ 0, and

{
µN (t) : t ≥ 0

}
is a

continuous-time Markov process.

For the XN -valued continuous-time block-structured Markov process, we define that
the probability distribution ofXN (t) is exchangeable, if for any level permutation (ki1 , ki2 , . . .,
kiN ) of (k1, k2, . . . , kN ) and any phase permutation (ji1 , ji2 , . . . , jiN ) of (j1, j2, . . . , jN ),

P
{
X1,N (t) = (k1, j1) , X

2,N (t) = (k2, j2) , . . . , X
N,N (t) = (kN , jN )

}
(3)

= P
{
Xi1,N (t) = (ki1 , ji1) , X

i2,N (t) = (ki2 , ji2) , . . . , X
iN ,N (t) = (kiN , jiN )

}
.

In the system of N weakly interacting big networks, the effect of a typical big network
on the dynamics of the given big network is of order 1/N , and the jump intensity of any
given big network depends on the configuration of other big networks only through the
empirical measure µN (t). To study the system of N weakly interacting big networks in
terms of Markov processes, it is seen from probability one that at most one big network
will jump, i.e., change state, at a given time, and the jump intensities of any given big
network depend only on its own state and the state of the empirical measure at that time.
In addition, the jump intensities of the N big networks have the same functional form.
Based on this, for the XN -valued Markov process, if the initial probability distribution of
XN (0) is exchangeable, then at any time t ≥ 0, the probability distribution of XN (t) is
also exchangeable.

For the system of N weakly interacting big networks, if the probability distribution of
XN (t) is exchangeable, then the N big networks are indistinguishable, thus we apply the
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mean-field theory to be able to analyze this system through only considering the Markov
process of any given big network (such as, the first big network); while analysis of the total
system will be completed by the propagation of Chaos (as N → ∞). Based on this, the
infinitesimal generator of the Markov process corresponding to the first big network can
be defined as follows:

Γ(N)
(
µN (t)

)
=


Γ
(N)
0,0

(
µN (t)

)
Γ
(N)
0,1

(
µN (t)

)
Γ
(N)
0,2

(
µN (t)

)
Γ
(N)
0,3

(
µN (t)

)
· · ·

Γ
(N)
1,0

(
µN (t)

)
Γ
(N)
1,1

(
µN (t)

)
Γ
(N)
1,2

(
µN (t)

)
Γ
(N)
1,3

(
µN (t)

)
· · ·

Γ
(N)
2,0

(
µN (t)

)
Γ
(N)
2,1

(
µN (t)

)
Γ
(N)
2,2

(
µN (t)

)
Γ
(N)
2,3

(
µN (t)

)
· · ·

Γ
(N)
3,0

(
µN (t)

)
Γ
(N)
3,1

(
µN (t)

)
Γ
(N)
3,2

(
µN (t)

)
Γ
(N)
3,3

(
µN (t)

)
· · ·

...
...

...
...

 ,

(4)

where the size of the matrix Γ
(N)
j,j

(
µN (t)

)
is mj for j ≥ 0, and the sizes of other matrices

can be determined (a.s.) accordingly. Since µN (t) is a random variable, it is clear that
Γ(N)

(
µN (t)

)
is a random matrix of infinite order. On the other hand, it is seen from the

law of large number that the limit of the empirical measure µN (t) is deterministic under
suitable conditions.

Let µN (t) → p (t) and Γ(N)
(
µN (t)

)
→ Γ (p (t)) (a.s.) for t ≥ 0, as N → ∞. Then

p (t) is a probability vector, and using some probability analysis, we may obtain an infinite-
dimensional dynamic system as follows:

d

dt
p (t) = p (t) Γ (p (t)) (5)

with the initial condition
p (0) = q. (6)

Obviously, the mean-field dynamic system, given in (5) and (6), is related to a nonlinear
Markov process whose infinitesimal generator is given by

Γ (p (t)) =


Γ0,0 (p (t)) Γ0,1 (p (t)) Γ0,2 (p (t)) Γ0,3 (p (t)) · · ·
Γ1,0 (p (t)) Γ1,1 (p (t)) Γ1,2 (p (t)) Γ1,3 (p (t)) · · ·
Γ2,0 (p (t)) Γ2,1 (p (t)) Γ2,2 (p (t)) Γ2,3 (p (t)) · · ·
Γ3,0 (p (t)) Γ3,1 (p (t)) Γ3,2 (p (t)) Γ3,3 (p (t)) · · ·

...
...

...
...

 . (7)

Remark: To establish the infinitesimal generator Γ (p (t)) of a nonlinear Markov
process, readers may also refer to some recent publications, for example, the discrete-
time Markov chains by Benaim and Le Boudec [7] and Budhiraja and Majumder [16], the
Markov decision processes by Gast and Bruno [31] and Gast at al. [32], the continuous-
time Markov chains by Dupuis and Fischer [23] and Budhiraja et al. [14, 15], and some
nice practical examples include Mitzenmacher [53], Bobbio et al. [8], Li et al. [46, 47], and
Li and Lui [48].

In what follows, it is necessary to provide some useful interpretation or proofs for how
to establish the mean-field dynamic system (5) and (6).

(a) Existence and Uniqueness

Consider the infinite-dimensional ordinary differential equation: d
dt
p (t) = p (t) Γ (p (t))

with p (0) = q. A solution in the classical sense is a (continuously) differential function
p (t) such that d

dt
p (t) = p (t) Γ (p (t)) with p (0) = q. A classical result is the Picard
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approximation as follows. If Γ (x) is (locally) Lipschitz on a set E ⊆ P (Ω), that is, there
exists a positive constant C such that

∥Γ (x)− Γ (y)∥ ≤ C ∥x− y∥ , x, y ∈ P (Ω) ,

and p (0) = q is in the interior of E, then there exists a unique global solution to the
ordinary differential equation: d

dt
p (t) = p (t) Γ (p (t)) with p (0) = q, within E.

To deduce whether the Γ (x) is (locally) Lipschitz on a set E ⊆ P (Ω), Li et al. [46]
and Li and Lui [48] gave an algorithmic method through dealing with some matrices of
infinite orders.

(b) The limiting processes

To discuss the limit: µN (t) → p (t) (a.s.) for t ≥ 0, as N → ∞, we need to set up
some suitable conditions in order to guarantee the existence of such a limit.

Let ek,j be the unit vector of infinite dimension in which the (k, j)th entry is one and
all the others are zero. Note that the empirical measure process µ(N) =

{
µN (t) : t ≥ 0

}
is

a Markov process on the state space PN (Ω) where PN (Ω) = P (Ω) ∩
(

1
N
Ω
)
, the possible

jumps of µ(N) are of the form (ek,j − el,i) /N for (k, j) ̸= (l, i), and (k, j) , (l, i) ∈ Ω. If
µN (t) = x ∈ PN (Ω), then at time t ≥ 0, Nxk,j of the big network is in State (k, j). Hence
the transition rate of the Markov process corresponding to the given big network is given

by Nxk,jΓ
(N)
k,j;l,i (x). Based on this, the generator A(N) of the Markov process µ(N) is given

by

A(N)f (x) =
∑

(l,i)∈Ω
(l,i)̸=(k,j)

Nxk,jΓ
(N)
k,j;l,i (x)

[
f

(
x+

1

N
(ek,j − el,i)

)
− f (x)

]
,

where f (x) is a real function on PN (Ω). It is easy to see that as N → ∞

A(N)f (x) →
∑

(l,i)∈Ω
(l,i)̸=(k,j)

xk,jΓk,j;l,i (x)

[
∂

∂xk,j

f (x)− ∂

∂xl,i

f (x)

]
def
= Af (x) .

Theorem 1. Suppose that for (k, j) , (l, i) ∈ Ω with (k, j) ̸= (l, i), there exists a Lips-

chitz continuous function Γk,j;l,i (p) : P (Ω) → [0,+∞) such that Γ
(N)
k,j;l,i (p) → Γk,j;l,i (p)

uniformly on P (Ω). If
{
µ(N) (0)

}
converges in probability to q ∈ P (Ω), then

{
µ(N) (t)

}
converges uniformly on compact time intervals in probability to p (t) ∈ P (Ω) for t ≥ 0,
where the probability vector p (t) is the unique global solution to the ordinary differential
equation: d

dt
p (t) = p (t) Γ (p (t)) with p (0) = q.

Proof: The proof may directly follow from Theorem 2.11 in Kurtz [42]. Here, we
only give a simple interpretation as follows. Firstly, we notice that

F (N) (p) =

(
∞∑
k=0

mk∑
j=1

)(
∞∑
l=0

ml∑
i=1

)
Npk,j

(
1

N
el,i −

1

N
ek,j

)
Γ
(N)
k,j;l,i (p)

and

F (p) =

(
∞∑
k=0

mk∑
j=1

)(
∞∑
l=0

ml∑
i=1

)
pk,j (el,i − ek,j) Γk,j;l,i (p) ,

where as N → ∞
Γ
(N)
k,j;l,i (p) → Γk,j;l,i (p) ,
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and Γ (x) is (locally) Lipschitz on a set E ⊆ P (Ω). Then, for the sequence
{
µ(N)(t), t ≥ 0

}
of Markov processes, it follows from Equation (III.10.13) in Rogers and Williams [57] or
page 162 in Ethier and Kurtz [24] that

M(N) (t) = µ(N)(t)− µ(N)(0)−
∫ t

0

{
µ(N)(x)Γ

(
µ(N)(x)

)}
dx

is a martingale with respect to N ≥ 1. Therefore, if
{
µ(N)(0)

}
converges weakly to q ∈

P (Ω) as N → ∞, then
{
µ(N)(t), N ≥ 1

}
converges weakly in DF [0,+∞) endowed with

the Skorohod topology to the solution p (t) to the ordinary differential equation: d
dt
p (t) =

p (t) Γ (p (t)) with p (0) = q, within P (Ω). This completes the proof.

3 The Fixed Points
In this section, we use the UL-type RG-factorization to provide some effective al-

gorithms for computing the fixed points of the ordinary differential equation: d
dt
p (t) =

p (t) Γ (p (t)) with p (0) = q. Further, we set up a nonlinear characteristic equation of the
censoring matrix to level 0, which is satisfied by the fixed points.

A point π ∈ P (Ω) is said to be a fixed point of the ordinary differential equation:
d
dt
p (t) = p (t) Γ (p (t)) with p (0) = q, if p (t) → π as t → +∞, and

lim
t→+∞

[
d

dt
p (t)

]
= 0.

In this case, it is clear that
πΓ (π) = 0, (8)

which is an infinite-dimensional system of nonlinear equations. In general, there exist
more difficulties and challenging due to its infinite dimensions when solving the fixed point
equation (8) together with πe = 1, where e is a column vector of ones with a suitable size.

It is easy to check that for every π ∈ P (Ω), Γ (π) is the infinitesimal generator of an
irreducible continuous-time Markov process. Based on Li [44], we can develop the UL-type
RG-factorization of the matrix Γ (π). To that end, we partition the matrix Γ (π) as

Γ (π) =

(
T (π) U (π)
V (π) W (π)

)
according to the level sets L≤n and L≥n+1 for n ≥ 0. Since the Markov chain Γ (π) is
irreducible, it is clear that the two truncated chains with infinitesimal generators T (π)
and W (π) are all transient, and the matrices T (π) and W (π) are all invertible. Note
that the inverse of the matrix T (π) is ordinary, but the invertibility of the matrix W (π)
is different under an infinite-dimensional meaning. Although the matrix W (π) of infinite
size may have multiple inverses, we in general are interested in the maximal non-positive
inverse W−1

max (π) of W (π), i.e., W−1 (π) ≤ W−1
max (π) ≤ 0 for every non-positive inverse

W−1 (π) of W (π). Of course, 0 ≤ [−W (π)]
−1
min ≤ [−W (π)]

−1
for every nonnegative

inverse [−W (π)]
−1

of −W (π), that is, [−W (π)]
−1
min is the minimal nonnegative inverse of

−W (π). Based on this, for n ≥ 0 we write

Γ[≤n] (π) = T (π) + U (π) [−W (π)]
−1
min V (π) =


ϕ
(n)
0,0 (π) ϕ

(n)
0,1 (π) · · · ϕ

(n)
0,n (π)

ϕ
(n)
1,0 (π) ϕ

(n)
1,1 (π) · · · ϕ

(n)
1,n (π)

...
...

...

ϕ
(n)
n,0 (π) ϕ

(n)
n,1 (π) · · · ϕ

(n)
n,n (π)

 ,
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where the size of the matrix ϕ
(n)
j,j (π) is mj for 0 ≤ j ≤ n, and the sizes of other matrices

can be determined accordingly. It is clear from Section 7 of Chapter 2 in Li [44] that for
n ≥ 0, 0 ≤ i, j ≤ n,

ϕ
(n)
i,j (π) = Γi,j (π) +

∞∑
k=n+1

ϕ
(k)
i,k (π)

[
−ϕ

(k)
k,k (π)

]−1

ϕ
(k)
k,j (π) .

Let
Ψn (π) = ϕ(n)

n,n (π) , n ≥ 0;

Ri,j (π) = ϕ
(j)
i,j (π)

[
−ϕ

(k)
j,j (π)

]−1

, 0 ≤ i < j;

and

Gi,j (π) =
[
−ϕ

(k)
i,i (π)

]−1

ϕ
(i)
i,j (π) , 0 ≤ j < i.

Then the UL-type RG-factorization of the matrix Γ (π) is given by

Γ (π) = [I −RU (π)]ΨD (π) [I −GL (π)] , (9)

where

RU (π) =


0 R0,1 (π) R0,2 (π) R0,3 (π) · · ·

0 R1,2 (π) R1,3 (π) · · ·
0 R2,3 (π) · · ·

0 · · ·
. . .

 ,

ΨD (π) = diag (Ψ0 (π) ,Ψ1 (π) ,Ψ2 (π) ,Ψ3 (π) , . . .)

and

GL (π) =


0

G1,0 (π) 0
G2,0 (π) G2,1 (π) 0
G3,0 (π) G3,1 (π) G3,2 (π) 0

...
...

...
...

. . .

 .

Based on the UL-type RG-factorization (9), it follows from Subsection 2.7.3 in Li [44]
that the fixed point π is given by

π0 = τx0 (π) ,

πk =
k−1∑
i=0

πiRi,k (π) , k ≥ 1,
(10)

where x0 (π) is the fixed point of the censored Markov chain Ψ0 (π) to level 0, and the
scalar τ is determined by

∑∞
k=0 πke = 1 uniquely.

Using the expression (10) of the fixed point π, we set up an important relation as
follows:

π =

(
τx0 (π) , π0R0,1 (π) ,

1∑
i=0

πiRi,k (π) ,
2∑

i=0

πiRi,k (π) , . . .

)
. (11)

In what follows we consider two special cases in order to further explain the fixed
point equation (11) with R-measure.

Case one: Nonlinear Markov processes of GI/M/1 type
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In this case, the infinitesimal generator Γ (π) is given by

Γ (π) =


B1 (π) B0 (π)
B2 (π) A1 (π) A0 (π)
B3 (π) A2 (π) A1 (π) A0 (π)

...
...

...
...

. . .

 .

Let R (π) be the minimal nonnegative solution to the nonlinear matrix equation

∞∑
k=0

Rk (π)Ak (π) = 0.

Then
πk = π1R

k−1 (π) , k ≥ 1,

where the two vectors π0 and π1 satisfy the following system of nonlinear matrix equations

(π0, π1)

 B1 (π) B0 (π)
∞∑
k=0

Rk (π)Bk+2 (π)
∞∑
k=0

Rk (π)Ak+1 (π)

 = 0

and
π0e+ π1 [I −R (π)]

−1
e = 1.

Thus, the fixed point equation (11) with R-measure is simplified as

π =
(
π0, π1, π1R (π) , π1R

2 (π) , . . .
)
.

Case two: Nonlinear Markov processes of M/G/1 type

In this case, the infinitesimal generator Γ (π) is given by

Γ (π) =


B1 (π) B2 (π) B3 (π) B4 (π) · · ·
B0 (π) A1 (π) A2 (π) A3 (π) · · ·

A0 (π) A1 (π) A2 (π) · · ·
A0 (π) A1 (π) · · ·

. . .
. . .

 .

Let G (π) be the minimal nonnegative solution to the nonlinear matrix equation

∞∑
k=0

Ak (π)G
k (π) = 0.

Then

Ψ0 (π) = B1 (π) +
∞∑
k=2

Bk (π)G
k−2 (π)G1 (π)

and for k ≥ 1

Ψ (π) = A1 (π) +
∞∑
k=2

Ak (π)G
k−1 (π) ;

and the R-measure

R0,j (π) =

[
∞∑

k=j+1

Bk (π)G
k−1 (π)

]
[−Ψ(π)]

−1
, j ≥ 1,
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and for i ≥ 1

Rj (π) =

[
∞∑

k=j+1

Ak (π)G
k−1 (π)

]
[−Ψ(π)]

−1
, j ≥ 1.

The fixed point π is given by
π0 = τx0 (π) ,

πk = π0R0,k (π) +
k−1∑
i=1

πiRk−i (π) , k ≥ 1,

where x0 (π) is the fixed point of the censored Markov chain Ψ0 (π) to level 0 and the
scalar τ is determined by

∑∞
k=0 πke = 1 uniquely. Thus, the fixed point equation (11) with

R-measure is simplified as

π =

(
τx0 (π) , π0R0,1 (π) , π0R0,2 (π) + π1R1 (π) , π0R0,3 (π) +

2∑
i=1

πiRk−i (π) , . . .

)
.

Now, we write the fixed point equation (11) with R-measure as a functional form:
π = F (R (π)), as shown in the above two special cases. Based on this, we can provide an
approximative algorithm as follows:

Algorithm I: Computation of the fixed points

Step one: Taking any initial probability vector: π(0) ∈ P (Ω).

Step two: Computing the infinitesimal generator: Γ
(
π(0)

)
; and then compute the

R-measure, which gives π(1) = F
(
R
(
π(0)

))
.

Step three: For N ≥ 2, compute π(N+1) = F
(
R
(
π(N)

))
.

Step four: For a sufficiently small ε > 0, if
∥∥π(N+1) − π(N)

∥∥ < ε, then the computa-
tion is over; otherwise we go to Step three.

Note that it is possible for some big networks that there exist multiple fixed points
because the infinitesimal generator Γ (π) is more general. In this case, it is a key to design
a suitable initial probability vector: π(0) ∈ P (Ω), for example, for any integer m ≥ 1 we
take

π(0) =

(
1

m
,
1

m
, . . . ,

1

m
, 0, . . .

)
.

Now, we provide another algorithm for computing the fixed points. To do end, we set
up a characteristic equation of the censoring matrix Ψ0 (π) to level 0, while the character-
istic equation is satisfied by the fixed points.

Note that for the censored Markov chain Ψ0 (π) to level 0, we have

π0Ψ0 (π) = 0, π0e = τ ∈ (0, 1) .

Thus it is easy to see from the irreducibility of the matrix Γ (π) that for the matrix Ψ0 (π)
of size m0, rank(Ψ0 (π)) = m0− 1 according to the irreducibility of the matrix Ψ0 (π), and
its eigenvalue with the maximal real part is equal to zero. Let the characteristic equation
be fx (π) = det (xI −Ψ0 (π)) = 0. Then the fixed points satisfy the characteristic equation
f0 (π) = det (Ψ0 (π)) = 0. Hence the fixed points satisfy the system of nonlinear equations
as follows: {

det (Ψ0 (π)) = 0,
rank (Ψ0 (π)) = m0 − 1.

(12)

Note that (12) provide another algorithm for computing the fixed points as follows:
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Algorithm II: Computation of the fixed points

Step one: Providing a numerical solution π̂ to the nonlinear characteristic equation:
det (Ψ0 (π)) = 0.

Step two: Check whether rank(Ψ0 (π̂)) = m0 − 1. If Yes, then π̂ is a fixed point. If
No, then going to Step one.

4 Stability and Metastability
In this section, we first discuss the Birkhoff center of the mean-field dynamic system:

d
dt
p (t) = p (t) Γ (p (t)) with p (0) = q. Then we apply the Lyapunov functions and the

relative entropy to study the stability or metastability of the big networks. Furthermore,
we provide several interesting open problems with detailed interpretation.

We write
Sπ = {π : πΓ (π) = 0, πe=1} .

Then it is clear that

Sπ =

{
π : π =

(
τx0 (π) , π0R0,1 (π) ,

1∑
i=0

πiRi,k (π) ,

2∑
i=0

πiRi,k (π) , . . .

)
, πe=1

}
or

Sπ = {π : det (Ψ0 (π)) = 0, rank (Ψ0 (π)) = m0 − 1, πe=1}

with πk =
k−1∑
i=0

πiRi,k (π), k ≥ 1.

Since the vector equation πΓ (π) = 0, together with πe=1, is nonlinear, it is possible
for some big networks that there exist multiple elements in the set Sπ. At the same time,
an argument by analytic function can indicate that the elements of the set Sπ are isolated.

To describe the isolated element structure of the set Sπ, we often need to use the
Birkhoff center of the mean-field dynamic system, and use the Birkhoff center to check
whether the fixed point is unique or not. Based on this, our discussion includes the
following two cases:

Case one: N → ∞. In this case, we denote by Φ (t) a solution to the system of
differential equations d

dt
p (t) = p (t) Γ (p (t)) with p (0) = q. Thus, the Birkhoff center of

the solution Φ (t) is defined as

Θ =
{
P ∈ P (Ω) : P = lim

k→∞
Φ(tk) for any scale sequence

{tk} with tl ≥ 0 for l ≥ 1 and lim
k→∞

tk = +∞
}
.

Notice that perhapsΘ contains the limit cycles or the equilibrium points (the local minimal
points, or the local maximal points, or the saddle points). Thus it is clear that Sπ ⊂ Θ.
Obviously, the limiting empirical Markov process {Y (t) : t ≥ 0} spends most of its time
in the Birkhoff center Θ, where Y (t) = limN→∞ µN (t) a.s..

Case two: t → +∞. In this case, we write

π(N) = lim
t→+∞

µN (t) , a.s.,

since for each N = 1, 2, 3, . . ., if the system of N weakly interacting big networks is stable.
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Let

Ξ =
{
π ∈ P (Ω) : π = lim

k→∞
π(Nk) for any positive integer sequence

{Nk} with 1 ≤ N1 ≤ N2 ≤ N3 ≤ · · · and lim
k→∞

Nk = ∞
}
.

It is easy to see that
Sπ ⊂ Ξ ⊂ Θ.

At the same time, we have

Sπ = {the local minimal points in Θ}

and

Θ−Sπ = {the limit cycles in Θ} ∪ {the local maximal points,or the saddle points in Θ} .

In what follows, we discuss stability and metastability of the big networks.

For the metastability in Sπ, a key is to determine a Lyapunov function for the mean-
field dynamic system: d

dt
p (t) = p (t) Γ (p (t)) with p (0) = q. The Lyapunov function g

defined on P (Ω) is constructed such that

yΓ (y) · ∇g (y) ≤ 0, y ∈ P (Ω) . (13)

It is easy to see that if π ∈ Sπ, then πΓ (π) · ∇g (π) = 0 due to the fact that πΓ (π) = 0.
On the other hand, if πΓ (π) · ∇g (π) = 0, then π ∈ Sπ.

Let |Sπ| be the number of elements in the set Sπ. If |Sπ| = 1, then

lim
N→∞

lim
t→+∞

µN (t) = lim
t→+∞

lim
N→∞

µN (t) = π, a.s..

If |Sπ| ≥ 2, then the system of big networks exhibits a metastability property, that is,
the state of the given big network switches from one stable point to the other after a long
residence time. In the study of metastability, it is a key to estimate the expected value of
such a residence time. See Bovier [11] and Olivieri and Vares [55] for more details.

An interesting issue in the study of big networks is to analyze stability or metastability
of the corresponding nonlinear Markov processes. On this line, it is a key to construct a
Lyapunov function or a local Lyapunov function. Note that the relative entropy function
in some sense can define a globally attracting Lyapunov function.

For p, q ∈ P (Ω), we define the relative entropy of p with respect to q as

R (p||q) =
∑
x∈Ω

px log

(
px
qx

)
.

Let Ψ (z) = z log z − z + 1. Then if p (t) and q (t) are two different solutions to the
ordinary differential equation

d

dt
p (t) = p (t) Λ,

where Λ is the infinitesimal generator of an irreducible continuous-time Markov process.
In this case, Dupuis and Fischer [23] indicated that

d

dt
R (p (t) ||q (t)) = −

∑
x,y∈Ω
x̸=y

Ψ

(
py (t) qx (t)

px (t) qy (t)

)
px (t)

qy (t)

qx (t)
Λy,x ≤ 0, (14)
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and d
dt
R (p (t) ||q (t)) = 0 if and only if p (t) = q (t) for t ≥ 0. Obviously, d

dt
R (p (t) ||π) = 0

if and only if p (t) = π for t ≥ 0.

Dupuis and Fischer [23] further demonstrated that for the ordinary differential equa-
tion: d

dt
p (t) = p (t) Γ (p (t)), the the relative entropy relation (14) can not be applied

directly. In this case, they first defined P(N) (t) as the state probability of the system of
N big networks at time t ≥ 0, and let P(N) (0) = ⊗Nq. Then they gave an approximate
method to construct the Lyapunov function as follows:

F (q) = lim
N→∞

lim
T→+∞

1

N
R
(
P(N) (0) ||P(N) (T )

)
= lim

N→∞

1

N
R
(
⊗Nq|| ⊗N π

)
.

For applying the relative entropy to construct a Lyapunov function, readers may also refer
to Budhiraja et al. [14, 15] for more details.

In the remainder of this section, we provide several interesting open problems with
detailed interpretation.

Open problem one: The mean drift condition.

We consider an irreducible QBD process whose infinitesimal generator is given by

Γ (p) =


B1 (p) B0 (p)
B2 (p) A1 (p) A0 (p)

A2 (p) A1 (p) A0 (p)
. . .

. . .
. . .

 ,

where Γ (p) e = 0, the sizes of the matrices B1 (p) and A1 (p) are m0 and m, respectively,
and the sizes of other matrices can be determined accordingly. We assume that for any
p ∈ P (Ω), the Markov process: A (p) = A0 (p) + A1 (p) + A2 (p), is irreducible, aperiodic
and positive recurrent. Let θp be the stationary probability vector of the the Markov
process A (p). Then it is clear that for for any p ∈ P (Ω), the Markov process Γ (p) is
positive recurrent if and only if θpA2 (p) e > θpA0 (p) e.

It is interesting to study how the mean drift condition: θpA2 (p) e > θpA0 (p) e for any
p ∈ P (Ω), can influence stability or metastability of the ordinary differential equation:
d
dt
p (t) = p (t) Γ (p (t)).

Open problem two: The censoring Markov processes.

For the infinitesimal generator Γ (p) given in (7), it is easy to give the infinitesimal
generator Ψ0 (p) of the censoring Markov processes to level 0. It is very interesting (but
difficult) to set up some useful relations of stability or metastability between two ordinary
differential equations: d

dt
p (t) = p (t) Γ (p (t)) and d

dt
p0 (t) = p0 (t)Ψ0 (p (t)).

5 Concluding Remarks
This paper sets up a broad class of nonlinear continuous-time block-structured Markov

processes by means of applying the mean-field theory to the study of big networks, and
proposes some effective algorithms for computing the fixed points of the nonlinear Markov
process by means of the UL-type RG-factorization. Furthermore, this paper considers
stability or metastability of the big network, and gives several interesting open problems
with detailed interpretation. Along such a line, there are a number of interesting directions
for potential future research, for example:

• providing algorithms for computing the fixed points of big networks with multiple
stable points;
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• studying the influence of the censoring Markov processes on the metastability;
• discussing how to apply the RG-factorizations given in Li [44] to compute the ex-
pected residence times in the study of metastability; and

• analyzing some big networks with a heterogeneous geographical environment, and set
up their simultaneous systems of nonlinear Markov processes.
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Generation of All Magic Squares of Order 5
and Interesting Patterns Finding

Ziqi Lin1,∗ Sijie Liu1,† Kai-Tai Fang1,2,‡ Yuhui Deng1,§

1Division of Science and Technology, BNU-HKBU United International College, Zhuhai 519085, China
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Abstract This paper aims to find an efficient way to generate all magic squares of order 5 and
further to discover some interesting patterns of them. Based on Schroeppel’s idea and Frénicle-quadset
in order 5, we propose an enumeration efficient algorithm for generation of all magic squares of order
5. For extending Frénicle - Amela patterns from order 4 to order 5 we find four patterns to appear at
the same time.

Keywords Enumeration algorithm; Frénicle - Amela patterns; Magic square of order 5.

1 Introduction
A Magic Square of order n is an n × n array consisting numbers in some specific

order, so that its sums of the elements in each horizontal rows, vertical columns, and two
diagonals are all equal. If elements in a magic square are consecutive integers starting
from 1 to n2, the magic square is call a Classical Magic Square of order n with magic
sum µn = n(n2 + 1)/2. In this study we focus only on the classical magic squares (magic
squares for short). The magic squares have been studied for thousands years. There are
a huge of literature on the magic square, for example, [2, 3]. But there are still so many
open problems. For example, for given n what is the number of magic squares of order
n? Table 1 shows the number of magic squares of order 3, 4 and 5, and [9] gives a list of
the number of magic squares for n = 3, 4, · · · , 10. We can see that the exact number of
magic squares of order n are unknown for most n. It also shows that the number of magic
squares of order n increases exponentially when n increases.

If a magic square can be obtained from another magic square by some transformations
in a certain sense, it is said that these two magic squares are isomorphic. For different
n the isomorphism employs different group of transformations. All the isomorphic magic
squares of a magic square form a basic form. Next question is how generate all the magic
squares of order n, or how generate all the basic magic squares. This question was solved
for n = 3, 4 as the total number is not large (see [6]). For n = 5, Schroeppel [7] proposed
an algorithm for generating all magic squares of order 5. He defined 32 transformations
for the basic form. However, we cannot find his computer code and a list of all magic
squares of order 5. [10] proposed a computational program which was written by an
anonymous. The author claims that all magic squares of order n (n ≥ 3) can be generated.
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†Supported by UIC Research Grant(R201409). Email:liusijiesophie@163.com
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But this author did not give any explanation on his program. For classification purpose
we need all (at least a certain percentage) of magic squares of order 5. In Section 2 we
propose a new algorithm for producing all magic squares of order 5. Various methods for
classification of magic squares of order 4 have been proposed. Fang, Luo and Zheng [4]
gave an comprehensive review on this topic. Can we extend those methods from order 4
to order 5? Section 3 gives some results on Frénicle - Amela-like patterns and points out
that there are 4 Frénicle - Amela-like patterns to appear in the same magic square. The
final section gives conclusion.

Table 1: The Number of Magic Squares of Order n, n = 3, 4, 5

Order Classical Magic Square Basic Magic Square
3 8 1
4 7,040 880
5 2,202,441,792 68,826,306

2 An Enumeration Algorithm of Magic Squares of Order 5
There are several existing methods for construction of magic squares of odd order.

For example, the Siamese method, the Lozenge method and matrix addition method can
generate some magic squares of an odd order including order 5. These methods aim to
provide only one or few magic squares of order 5 and cannot generate all magic squares of
order 5. Until now, we cannot find the whole set of magic square of order 5.

Schroeppel’s method [7, 5] provides a counting algorithm without the computational
code. On the other hand the exhaustive method [10] provides computational code without
any explanation. We are not sure whether this method can enumerate all magic squares of
order 5 or not. For the classification purpose of magic squares of order 5 we really need to
know the way for enumerating the all squares so that we can find some way for choosing
representative magic squares of order 5 in further study. This is the main motivation of
the paper. Obviously, this new algorithm will generate only all the basic magic squares
of order 5. Let M be the set of magic squares of order 5. Schroeppel [7] considered the
following transformations for any M ∈M:

s1 : rotate M 90 degrees clockwise; repeat to use s1 we can obtain other 3 M ’s inM;

s2 : flip M about the main diagonal which means transpose the magic square;

s3 : exchange the first and fifth rows and columns of M , respectively;

s4 : exchange rows and columns of M as follows: row 1 ⇔ row 2, row 4 ⇔ row 5,
column 1 ⇔ column 2, and column 4 ⇔ column 5, respectively.

By the above transformations we can obtain 31 other magic squares from a M ∈
M. The total 32 squares form a basic form of magic squares of order 5. Schroeppel [7]
announced that there are 68,826,306 basic magic squares of order 5.

A magic square M of order 5 involves 12 5-vectors (5 rows, 5 columns and 2 diagonal
vectors) with the same sum µ = 65. Sort these vectors in descending order and denote the
set of these 12 vectors by V(M). Define a set

A = {(x1, · · · , x5) : xi ∈ Ω, x1 > x2 > x3 > x4 > x5,
5∑

i=1

xi = 65}, (1)
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where Ω = {1, 2 · · · , 25}. This is an extension of Frénicle-quadset of order 5 (see [6]).
Obviously, V(M) ⊆ A for any M ∈M. It is easy to find that there are 1394 vectors in A.
The new algorithm is based on how to choose vector from M in each step.

Let us put 25 English letters from A,B, · · · , Y into a 5× 5 array (cf. Figure 1). We
shall decide values of these 25 letters so that the final square belongs to M.

Figure 1: 25 letters in 5× 5 array

2.1 An Enumeration Algorithm

In this subsection we propose a new enumeration algorithm for generating all basic
magic squares of order 5. A flowchart of this algorithm is given in Figure 2. In this
flowchart we also use a magic square as an example for illustration. In this algorithm we
pick up some idea from Schroeppel [7] and each step depends on a subset of A. In the
begin we consider the full set of A. Denote a subset of A by Ax, where x ∈ Ω and

Ax = {x = (x1, · · · , x5) : x ∈ A, some xi = x}.

Similarly we can define a subset of A, denoted by Ax,y, where each vector should involve
integers x and y.

The new algorithm involves the following steps:

Step 1 Choose an integer A from the set {1, 2, · · · , 13} as the center number. Suppose
we choose A = 13.

Step 2 Choose two vectors fromAA for two diagonals, then we set values forB,C, · · · , I
in Figure 1. Obviously, these two vectors have no overlapping elements except A. For
avoiding to generate magic squares belonging to the same basic form, we follow Schroep-
pel’s consideration to put constraints D > C > B, G > F > B, E > B, I > B, and
H > B. For example, two vectors (25, 24, 13, 2, 1) and (23, 17, 13, 9, 3) are chosen and set
B = 1, C = 2, D = 24, E = 25, and F = 3, G = 23, H = 9, I = 17 for satisfying the above
constraints.

Step 3 Choose vectors from A for filling the central vertical circle in columns 2,3, and
4 so that we can assign values to J,K,L,N,Q,O,M,P . There are three substeps:

3a) Choose one vector from AB,F for the first row of the square. As the values of
B and F are fixed already, this vector should have two integers B,F and cannot involve
any other integers appearing in the two diagonals. In our example, assign values to J =
22,K = 21, and L = 18, respectively.

3b) Choose one vector fromAJ,C,I and another one fromAL,H,D to complete columns
2 and 4 of the square, respectively. The results are M = 16, N = 8, and P = 10, O = 4 in
this example.

3c) For the last row of the square, assign values to Q = 5 so that sum of the last
row equals to 65.
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Step 4 Assign values to R = 14, S = 12 in row 3 and T = 15, U = 11 in column 3 by
choosing one vector from AM,A,P and another from AK,A,Q, respectively.

Step 5 Assign values to V = 20,W = 7, X = 19, Y = 6 to complete this construction
so that sum of each column and row equals to 65.

2.2 Flowchart and example

The details can refer to the flowchart below. It is clear, each step may have many
choices. The user needs to run all choice combinations for obtaining all basic magic squares
of order 5.
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Figure 2: Flowchart and example

Notice that we choose center number only from the set {1, 2, · · · , 13}. Can we choose
center number from the set {14, · · · , 25}? It is known that if M = (mij) ∈ M, then
M c = (26 −mij) is also a magic square. We call M c as complement magic square of M .
Therefore, magic squares of order 5 with center number C, 13 < C ≤ 25, can be obtained
from their complement magic squares.
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3 Special patterns of Magic Squares of Order 5
There are a lot of studies on classification of magic square of order 4. There are two

kinds of methods: graph visualization and algebraic methods. Fang, Luo and Zheng [4]
gives a comprehensive review on classification of magic squares of order 4. Candy [1] gave
a comprehensive study on classification of magic squares of order 5 from algebraic point of
view. In this section we focus only on extension of Frénicle - Amela patterns. Frénicle put
a magic square of order 4 into a square with 16 subsquares and considered all possible 4
neighborhood numbers adding up to the magic sum µ4 = 34. There are 5 kinds of pattern
in Figure 3 with labels α, β, γ, δ, and ε.

Figure 3: Frénicle - Amela pattern

How to extend Frénicle - Amela patterns from order 4 to order 5 is not a straight
forward job. We consider four patterns in Figure 4 such that sum of the integers in one
pattern to be the magic sum µ5 = 65. It is interesting to find these four patterns are
strongly dependent.

Figure 4: Four patterns

Theorem 1.
If a magic square of order 5 presents one of the four patterns in Figure 4, the other three
patterns must appear in this magic square.

Proof
Use letters to stand for different patterns. Let L denote the center number, a, b, c, d
denote the four patterns, where a = (a1, a2, a3, a4), b = (b1, b2, b3, b4), c = (c1, c2, c3, c4),
and d = (d1, d2, d3, d4). Then a magic square of order 5 can be written as a array in Figure
5. The four patterns in Figure 4 are equivalent to satisfy the following equations by using
the above letters in Figure 5.
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Figure 5: Patterns

a1 + a2 + a3 + a4 + L = 65, (2)

b1 + b2 + b3 + b4 + L = 65, (3)

c1 + c2 + c3 + c4 + L = 65, (4)

d1 + d2 + d3 + d4 + L = 65. (5)

We need to prove if one of the above equation (2)-(5) holds, then other 3 equations are
also hold. Now assume that equation (2) holds and we are going to prove (3),(4) and (5)
to be true. According to the definition of the magic square of order 5, each row sum, each
column sum and each diagonal sum of a magic square are all equal to 65. Thus, we can
obtain 12 equations as follows.

a1 +A+ b1 +B + a2 = 65 (6)

C + c1 + d1 + c2 +D = 65 (7)

b2 + d2 + L+ d3 + b3 = 65 (8)

E + c3 + d4 + c4 + F = 65 (9)

a3 +G+ b4 +H + a4 = 65 (10)

a1 + C + b2 + E + a3 = 65 (11)

A+ c1 + d2 + c3 +G = 65 (12)

b1 + d1 + L+ d4 + b4 = 65 (13)

B + c2 + d3 + c4 +H = 65 (14)

a2 +D + b3 + F + a4 = 65 (15)

a1 + c1 + L+ c4 + a4 = 65 (16)

a2 + c2 + L+ c3 + a3 = 65 (17)

From (16) and (17) we have a1 + a2 + a3 + a4 + L + c1 + c2 + c3 + c4 + L = 65 + 65. By
using (2), we obtain (4), i.e., pattern γ.

Adding equations (6) and (10) together, we have a1 + a2 + a3 + a4 +A+B+G+H +
b1 + b4 = 65 + 65. Replace a1 + a2 + a3 + a4 by 65− L we obtain

A+B +G+H = 65 + L− b1 − b4. (18)

Adding the condition (12) and (14) together, we obtain c1 + c2 + c3 + c4 + A+B +G+
H + d2 + d3 = 65 + 65. Replacing c1 + c2 + c3 + c4 by 65 − L and A + B + G + H by
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65 + L− b1 − b4 we have

d2 + d3 = b1 + b4. (19)

By a similar way we are going to show d1 + d4 = b2 + b3. Firstly, adding (11) and (15)
together, we obtain a1 + a2 + a3 + a4 + C + D + E + F + b2 + b3 = 65 + 65. Replacing
a1 + a2 + a3 + a4 by 65− L we obtain

C +D + E + F = 65 + L− b2 − b3. (20)

Secondly adding (7) and (9) implies c1 + c2 + c3 + c4 +C +D+E+F + d1 + d4 = 65 + 65.
Replace c1 + c2 + c3 + c4 by 65−L and replace C+D+E+F by 65 +L− b2− b3, we have

d1 + d4 = b2 + b3. (21)

From (19) and (21) we have

d1 + d2 + d3 + d4 = b1 + b2 + b3 + b4. (22)

Thirdly, adding the condition (8) and (13) together, we obtain b1 + b2 + b3 + b4 + d1 + d2 +
d3 + d4 + 2L = 2× 65. Since b1 + b2 + b3 + b4 = d1 + d2 + d3 + d4, replace one of them by
another one we find

b1 + b2 + b3 + b4 + L = 65,

d1 + d2 + d3 + d4 + L = 65. (23)

Equations in (23) show that patterns β and δ exist. By a similar way we can prove from
pattern δ to find patterns α, β and γ; and other cases. It completes the proof.

4 Conclusion
In this paper we propose an algorithm for generating all the basic magic squares of

order 5. Millions of basic magic squares of order 5 have been generated already. It needs
time to obtain all the magic squares of order 5. We plan to put these squares into a
database for public use in future. Classification of magic squares of order 5 is a challenging
topic to study. Candy [1] gave a comprehensive study from algebraic point of view. In
this paper we use graphical method for classification. We believe that there are a lot of
interesting results to be discovered along this direction in near future.
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Abstract In this work we consider the general linear model and some of its extensions. We study
their sensitivity matrix results, with theoretical developments and numerical comparisons. We include
illustrated examples.

Keywords Least squares; Maximum likelihood; Mixed estimation, Sensitivity matrix

1 Introduction
The local sensitivities of the least squares and other estimators of the regression co-

efficients in linear and mixed models have been studied and applied to several areas. The
local sensitivities of the posterior mean and precision matrix in the Bayesian context have
been established. For an introductory account of matrix differential calculus with appli-
cations in statistics and econometrics, see Magnus and Neudecker [7]. For a motivation
and earlier results from the Bayesian point of view, see Polasek [9]. For a fundamental
treatment of local sensitivity and diagnostic tests with applications to linear and random
effects models, see Magnus and Vasnev [8] and Vasnev [12]. For the sensitivity matrices of
least squares estimators and their relevant uses in spatial and panel-spatial autoregressive
models, see Liu et al. [6, 4].

In this paper we make a systematic study on the local sensitivities of the generalized
least squares, maximum likelihood and other estimators in the general linear model and
its variants including those with instrumental variables and those with linear restrictions.
We include the variance estimators in these models. We consider both normal and no-
normal distribution assumptions for these models. In section 2, we introduce basic matrix
differential calculus results and the definition of local sensitivity matrix in the context of
linear models we need for the later sections. In section 3, we present the local sensitivity
matrix results in general linear model and conduct their numerical comparisons in a number
of scenarios. In section 4, we consider the different variations of the general linear model.
In section 5, we discuss possible extensions of the models and results presented in the two
previous sections. We make concluding remarks in section 6.

2 Matrix calculus and local sensitivity

2.1 Matrix calculus

For n× p matrix X we use vecX denote the vectorization vector of X. Let ⊗ denote
the (right) Kronecker product of two matrices. We have the following definitions.
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Definition 1. Let g(x) be a scalar function of an n× 1 vector x. The derivative of g(x) is

Dg(x) = ∂g(x)/∂x′. (1)

Definition 2. Let f(x) be an m× 1 vector function of an n× 1 vector x. The derivative
(or Jacobian matrix) of f(x) is

Df(x) = ∂f(x)/∂x′. (2)

Definition 3. If F (X) is a differential m× q real matrix function of an n× p matrix X,
then the Jacobian matrix of F (x) at X is the mq × np matrix

DF (X) = ∂F (X)/∂(vecX)′. (3)

2.2 Local sensitivity

Consider the general linear model, as given in e.g. Magnus and Neudecker [7] and Rao
et al. [10]

y = Xβ + ε (4)

where y is an n × 1 vector of observable random variables, X is a non-stochastic n × q
matrix and ε is an n× 1 vector of random disturbances with E(ε) = 0 and E(εε′) = σ2V ,
where V is a known positive definite n × n matrix and σ2 is unknown. The p × 1 vector
β of regression coefficients is supposed to be fixed but unknown, and needs to be estimated.

The least squares estimator of β is

b = (X ′X)−1X ′y. (5)

The local sensitivity p× np matrix of β̂ with respect to X is

∂b/∂(vecX)′ = (X ′X)−1 ⊗ (y −Xb)′ − b′ ⊗ (X ′X)−1X ′. (6)

This matrix reflects the effects of small changes in X on the least squares estimator b.

The general linear model, with alternatives including the generalized least squares
estimator of β, and some of its variations are considered in the next section. One of the
purposes of this present work is to establish their local sensitivity results.

3 General linear model and variations

3.1 General linear model

For model (1), the generalized least squares estimator of β is

β̂ = (X ′V −1X)−1X ′V −1y. (7)

Its local sensitivity β̂ with respect to X is ∂β̂/∂(vecX)′.

As we assume σ2 is unknown and needs to be estimated, an unbiased estimator is

σ̂2 = (y −Xβ̂)′V −1(y −Xβ̂)/(n− p). (8)

We may then find the sensitivity matrix of σ̂2 with respect to X i.e. ∂σ̂2/∂(vecX)′.
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3.2 General linear model with linear restrictions

For the general linear regression model as given by (1)

y = Xβ + ε, (9)

where we consider we have prior information about β in the form of a set of k independent
exact linear restrictions expressed as

r = Rβ, (10)

where R is a k× p known matrix of rank k ≤ p and r is a k× 1 vector of known elements.

The restricted least squares estimators of the elements of the parameters in the for-
mulation (9) and (10) are well-known to be

β̂RLS = β̂ − (X ′V −1X)−1R′[R(X ′V −1X)−1R′]−1(Rb− r), (11)

σ̂2
RLS =

(y −Xβ̂RLS)′V −1(y −Xβ̂RLS)

n− p+ k
, (12)

where β̂ = (X ′V −1X)−1XV −1y is the (unrestricted) generalized least squares estimator of
β.

We present their local sensitivity matrices, extending a result by Liu and Neudecker
[5] for V = I.

3.3 Numerical analysis

We conduct simulation studies to examine the sensitivity results and make numerical
comparisons.

4 Possible extensions

4.1 Extensions

We discuss possible extensions of those models considered. We may consider the
maximum likelihood estimation for those models under elliptical distributions studied by
e.g. Fang et al. [1]. We may consider related models including those with stochastic
restrictions, seemingly unrelated regression and growth curve models studied by e.g. Theil
and Goldberger [11], Liu et al. [3] and Gruber [2].

4.2 Discussion

We may apply some sensitivity results to the first-order approximations of those pos-
sible estimators in an approach as taken in e.g. Liu et al. [6, 4].

5 Concluding remarks
We have treated the models in a systematic manner.
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Semiparametric Analysis of Recurrent Event
Data with Cure Rate
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Abstract Recurrent event data usually occur in long-term studies which concern recurrence rates of
the disease. In studies of medical sciences, patients who have infected with the disease, like cancer, were
conventionally regarded as impossible to be cured. However, with the development of medical sciences,
recently those patients were found to be possibly recovered from the disease. The recurrence rate of
the events, which is of primary interest, may be affected by the cure rate that may exist. Therefore,
we proposed semiparametric statistical analysis for recurrent event data with subjects possibly being
cured. In our approach, we present a proportional rate model for recurrence rate with the cure rate
adjusted through a logistic regression model, and develop some estimating equations for estimation of
the regression parameters, with their large sample properties, including consistency and asymptotic
normality established. Numerical studies under different settings were conducted for assessing the pro-
posed methodology and the results suggest that they work well for practical situations. The approach
is applied to a bladder cancer dataset which motivated our study.

Keywords Recurrent Event; Proportional Rate Model; Cure Rate; Logistic Model; Estimating Equa-
tion

1 Introduction
Recurrent event data usually occur in long-term studies which concern recurrence rates

of certain events. Difficulty may arise due to the inherent order and dependence of the
times of recurrences. Besides the recurrence times, censor time may exist. What’s more,
the recurrent times and censor time may also be dependent. All above brings challenges
in statistical analysis and relevant inference for recurrent event data [1, 2, 3]. The results
of research on recurrent event data therefore will serve as new methodologies with wide
applications.

In the analysis of recurrent event data, it is often of primary interest to study the
effect of covariates on recurrence rate. Let N∗(t) be the number of events occurred
in [0, t], then µ(t) is referred as rate function of N∗(t), if E{dN∗(t)} = µ(t)dt, where
dN∗(t) = N∗{(t + dt)−} − N∗(t−), the increment of N∗ in the interval [t, t + dt) when

dt → 0. Suppose there are n independent subjects, and denote N∗
i (t) =

∫ t

0
dN∗

i (s) by the
number of recurrences that subject i has experienced up to time t. In real data analysis, the
observation usually terminates at some time point, that is, the subject i may be censored
at time Ci. The underlying recurrent event process N∗

i (·) after the censor time Ci was

unobserved, and the actual process we observed was Ni(t) =
∫ t

0
I(Ci ≥ s) dN∗

i (s). Further-
more, let Xi(t) denote the covariates which may affect the recurrence rate, and assume the
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independence of the censor time Ci with N∗
i (t) given Xi(·). That is, E{dN∗

i (t)|Xi(t), Ci ≥
t} = E[dN∗

i (t)|Xi(t)]. For the rate function of the recurrent event given Xi(·), what is well
known as the proportional rate model is listed as follows:

E{dN∗
i (t)|Xi(t)} = λ0(t) exp{γ′

0Xi(t)}dt (1)

where γ0 is a vector of unknown parameter, and λ0(·) is the baseline rate function which
is also unknown. About the model (1), Pepe and Cai[4] established the large sample
theory of the estimate for γ0, Lawless, et al. [5, 6] studied the estimates of γ0 and Λ0(t)
and their asymptotic properties with assuming the recurrence times are discrete, among
others, Lin et al. [7] made improvement to [5, 6] methods and proposed the confidence
interval estimation for the mean function.

With recent development of medical sciences, some diseases that conventionally re-
garded as impossible to be cured and have the tendency of recurring were found to be likely
cured. Those patients who have been recovered are called long-term survivors [8]. After
some time point, the cured subjects would not be infected with the disease anymore and
withdraw from the recurrent event process. Therefore it somehow decrease the recurrence
rate of the disease. If we apply traditional methods to analyze recurrent event data with
long-term survivors, the results may not be convincing and get difficult to interpret [9].

For survival data, there are some existing methods on how to take into account the
cure rate. Boag [10] firstly defined mixture models and proposed estimation procedures
for survival proportions of both cured and uncured patients. Farewell [11] generalized Cox
model and used mixture models to analyze survival data with long-term survivors. To
study the hazard function, Farewell took logistic regression model for cured subjects and
proportional hazard models for subjects under risk, that is, uncured subjects. Kuk and
Chen[12], and Taylor [13] estimated the regression parameters and cured probability using
semiparametric framework. However, since the variable which indicates cured or not is
actually unobserved, Sy and Taylor[14] viewed the cured variable as a latent variable, and
then manipulated the estimation by EM algorithm. All the methods aforementioned are
based on the survival data, while in the recurrent event data, subjects are assumed to
be infected recurrently and there is no subject cured. Few research exists for the context
of recurrent event analysis with concern of cure rate. Cook and Lawless[15] mentioned
modeling the cure rate by logistic model though, more details are needed.

In section 2, we proposed a logistic regression model for cure rate and then present
a proportional rate model for recurrence rate (2), with the primary interest in the effects
of covariates on recurrent rate. Further, estimating equations were developed for the
estimation of regression parameters. Consistency and asymptotic normality of estimation
were established in section 3. In section 4, we conducted numerical studies under different
settings for assessing the proposed models and estimations, and the results suggest that
they work well. In addition, we applied the approach to a real data set of bladder tumor,
and the results were given in section 5.

2 Models and Estimation Methods
Suppose there are n subjects in our study and they are independent. W (t) and X(t)

denote the covariates which may affect the recurrent rate. Specifically, W (t) affects the
recurrent rate through cure rate, that is, W (t) doesn’t affect the rate of recurrences directly,
but affects it through the cure rate. Comparatively X(t) affects recurrent rate directly,
and the affect is fitted by Cox proportional rate model (1) . W (t) and X(t) are exclusively
different covariate vectors. Let N∗(t) be the underlying counting process up to time t,
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since a subject could be censored at time C, hence N∗(t) is only observable by time t.
Take N(t) = N∗(t∧C), where a∧b = min(a, b), then N(t) is the actual observed recurrent
process.

Let π denote the cure probability for some subject, then uncured probability is equal
to (1 − π). If the subjects consist of cure patients, then we propose semiparametric pro-
portional regression model with cure rate as follows:

E[dN∗
i (t)|Wi(t), Xi(t)] = [1− π(Wi(t))] exp{γ′

0Xi(t)}λ0(t)dt (2)

π(Wi(t)) =
exp{β′

0Wi(t)}
1 + exp{β′

0Wi(t)}
(3)

In recurrent event data, the observed data consist of {Ni(·), Xi(·),Wi(·), Ci} (i =
1, · · · , n) and indicator variables Yi(t) = I(Ci ≥ t). If we define the process:

Mi(t; θ0) = Ni(t)−
∫ t

0

Yi(s)[(1 + exp{β′
0Wi(s)})−1 exp{γ′

0Xi(s)} dΛ0(s)]

then we can easily show that Mi(t; θ0) is a zero-mean process. The proof will be given in
the Appendix.

To simplify, let Z(t) = (W (t)′, X(t)′)′, then for given θ = {β′, γ′}′, we estimate Λ0(t)
by

Λ̂0(t; θ) =

∫ t

0

∑n
i=1 dNi(s)∑n

i=1 Yi(s)(1 + exp{β′Wi(s)})−1 exp{γ′Xi(s)}
(4)

and to estimate θ0 = {β′
0, γ

′
0}′, we construct estimating equations

n∑
i=1

∫ τ

0

Zi(s){dNi(s)− Yi(s)[(1 + exp{β′Wi(s)})−1 exp{γ′Xi(s)} dΛ0(s; θ)]} = 0 (5)

Define

Sz(t; θ) =n−1

n∑
i=1

Yi(t)(1 + exp{β′Wi(t)})−1 exp{γ′Xi(t)}Zi(t)

S0(t; θ) =n−1

n∑
i=1

Yi(t)(1 + exp{β′Wi(t)})−1 exp{γ′Xi(t)}

Z̄(t; θ) =
Sz(t; θ)

S0(t; θ)

and denote the limits of Sz(t; θ), S0(t; θ), Z̄(t; θ) by sz(t; θ), s0(t; θ), z̄(t; θ), respectively,
then if we plug (4)into (5), we have

n∑
i=1

∫ τ

0

{Zi(s)− Z̄(s; θ)}dNi(s) = 0 (6)

If we denote the solution to (6) by θ̂ = (β̂′, γ̂′)′, then the estimator of Λ0(t) can be given

by Λ̂0(t; θ̂). In the following section, we will illustrate with asymptotic results.
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3 Asymptotic Results
We assume the following holds:

(∆1) {Ni(·), Yi(·),Wi(·), Xi(·)}, (i = 1, · · · , n) are identically independently dis-
tributed.

(∆2) P (Yi(τ) = 1) > 0, and Ni(τ) < η < ∞, i = 1, · · · , n, a.e., where η is a constant.

(∆3) Wi(·) and Xi(·) can be bounded by a constant.

(∆4) A is nonsingular matrix, where

A = E{
∫ τ

0

{Zi(s)− z̄(s; θ0)}⊗2 Yi(s) [ (1 + exp{β′
0Wi(s)})−1 exp{γ′Xi(s)}dΛ0(s) ] } (7)

Denote b⊗2 = bb′, and let

U(t; θ) =

n∑
i=1

∫ t

0

{Zi(s)− Z̄(s; θ)}dNi(s).

The main asymptotic results are listed as follows, with their proofs given in the Ap-
pendix.

Theorem 1. (Asymptotics on U(t; θ)) If (∆1)-(∆4) holds, then n−1/2U(t; θ) asymptot-
ically follows a multivariate normal distribution with mean of 0 and variance-covariance
matrix of ξ(s, t), where

ξ(s, t) = E[

∫ s

0

{Zi(u)− z̄(u; θ0)}dMi(u; θ0)

∫ t

0

{Zi(v)− z̄(v; θ0)}′dMi(v; θ0)] (8)

By strong law of large number and lemma 1 in [7] we can know that the consistent estimator

of ξ(s, t) is ξ̂(s, t), here

ξ̂(s, t) = n−1

n∑
i=1

[

∫ s

0

{Zi(u)− Z̄(u; θ̂}dM̂i(u; θ̂)

∫ t

0

{Zi(v)− Z̄(v; θ̂)}′dM̂i(v; θ̂)]

M̂i(t; θ̂0) =Ni(t)−
∫ t

0

Yi(s)[(1 + exp{β̂′Wi(s)})−1 exp{γ̂′Xi(s)} dΛ̂0(s; θ̂)]

Theorem 2. (Asymptotics on θ̂0) If (∆1)-(∆4) holds , then θ̂ consistently converges to

θ0, and n
1
2 {θ̂−θ0} asymptotically follows a Gaussian process with mean of 0 and variance-

covariance matrix of A−1ΣA−1, where A is defined in (∆4), and Σ = ξ(τ, τ). And the

consistent estimator of n
1
2 {θ̂ − θ0} is given by Â−1Σ̂Â−1 , where Σ̂ = ξ̂(τ, τ), and

Â = n−1

n∑
i=1

{
∫ τ

0

{Zi(s)− Z̄(s; θ̂)}⊗2Yi(s)[(1 + exp{β̂′Wi(s)})−1 exp{γ̂′Xi(s)}dΛ̂0(s)]}

Theorem 3. (Asymptotics on Λ̂0(t)) If (∆1)-(∆4) hold, then Λ̂0(t) for t ∈ [0, t] consis-

tently converges to Λ0(t) a.e., and n
1
2 {Λ̂0(t; θ̂)−Λ0(t)} asymptotically follows a Guassian

process with mean of 0 and variance-covariance matrix of Γ(s, t) = E{Φi(s)Φi(t)}, where

Φi(t) =

∫ t

0

dMi(u; θ0)

s0(u; θ0)
−B(t; θ0)

′A−1

∫ τ

0

Yi(u){Zi(u)− z̄(u; θ0)}′dMi(u; θ0) (9)

B(t; θ) =

∫ t

0

z̄(u; θ)λ0(u)du (10)
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We can get a consistent estimator of Γ(s, t) as

Γ̂(s, t) = n−1

n∑
i=1

Φ̂i(s)Φ̂i(t), (11)

where

Φ̂i(t) =

∫ t

0

dM̂i(u; θ̂)

S0(u; θ̂)
− B̂(t)′Â−1

∫ τ

0

Yi(u){Zi(u)− Z̄(u; θ̂)}′dM̂i(u; θ̂),

B̂(t; θ) =

∫ t

0

Z̄(u; θ̂)dΛ̂0(u; θ̂)

4 Simulation Studies
To assess the performance of our proposed estimation procedures under small sample,

we conducted a set of simulations. First we generated Xi and Wi from a Bernoulli distri-
bution with a probability of success 0.5. The longest follow-up time was τ , and the censor
time Ci was generated from a uniform distribution in (τ/2, τ). Let λ0(t) = c/τ , where c is
a constant, and Ni(t) is a Poisson process with the mean function of

Λ(Ci|Zi) = Λ0(Ci)(1 + exp{βWi})−1 exp{γXi} = cCi(1 + exp{βWi})−1 exp{γXi}/τ.

The observation times are the order statistics of (ti1, · · · , tiki
), with ki generated from the

uniform distribution of U(0, Ci).

Table 1: Simulation results for proportional rate model with cure rate

n=100 n=100 n=200 n=200
τ = 1 τ = 2 τ = 1 τ = 2

γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂
θ = (0, 0)
BIAS 0.0020 -0.0123 0.0016 -0.0053 -0.0034 -0.0063 -0.0054 -0.0063
SSE 0.1078 0.2359 0.1075 0.2324 0.0794 0.1573 0.0789 0.1593
SEE 0.1386 0.2428 0.1394 0.2438 0.0649 0.1665 0.0650 0.1665
CP 0.9140 0.9260 0.9240 0.9320 0.9410 0.9430 0.9260 0.9380
θ = (0, 0.1)
BIAS -0.0044 -0.0532 -0.0048 -0.0604 -0.0041 -0.0460 -0.0057 -0.0456
SSE 0.1126 0.2181 0.1090 0.2187 0.0755 0.1442 0.0630 0.1725
SEE 0.1495 0.2548 0.1478 0.2534 0.0828 0.1745 0.0728 0.1747
CP 0.9280 0.9360 0.9280 0.9400 0.9330 0.9470 0.9420 0.9500
θ = (0.1, 0)
BIAS -0.0399 -0.0154 -0.0372 -0.0134 -0.0358 -0.0042 -0.0380 -0.0132
SSE 0.1105 0.2283 0.1111 0.2320 0.0785 0.1639 0.0786 0.1618
SEE 0.1380 0.2428 0.1383 0.2427 0.0657 0.1672 0.0645 0.1660
CP 0.9310 0.9340 0.9230 0.9290 0.9260 0.9330 0.9270 0.9340
θ = (0.1, 0.1)
BIAS -0.0408 -0.0540 -0.0417 -0.0613 -0.0415 -0.0565 -0.0433 -0.0575
SSE 0.1078 0.2220 0.1133 0.2218 0.0766 0.1559 0.0686 0.1579
SEE 0.1500 0.2549 0.1486 0.2532 0.0781 0.1739 0.0827 0.1579
CP 0.9270 0.9310 0.9170 0.9290 0.9150 0.9270 0.9240 0.9320

Table 1 showed the estimation results of (β0, γ0) under the settings when (β0, γ0) take
(0, 0), (0.1, 0), (0, 0.1) and (0.1, 0.1), and τ takes 1 or 2 . The sample size n = 100 or 200.
The cure rate is 10%. We make 1000 replications of simulations. The table displays Bias,
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SSE, SEE and CP, where Bias represents the sample mean of θ̂ minus the true value of
parameter, SSE is sampling standard deviation of θ̂, SEE is the sample mean of θ̂ standard
deviation estimates, and CP is the 95% empirical confidence level of θ0. From the results
we can see that the Bias is nearly 0, SSE and SEE are quite close to each other, and CP
is also reasonable. All above showed that our proposed approaches work well.

Table 2: Comparison to the results of γ̂ under proportional rate model without cure rate

n = 100 n = 200
BIAS BIAS∗ SSE SSE∗ BIAS BIAS∗ SSE SSE∗

τ = 1
γ = −0.1 -0.0054 -0.1176 0.2238 0.2972 -0.0179 -0.2085 0.1749 0.3623
γ = 0 -0.0072 -0.1255 0.3152 0.3371 0.0019 -0.1575 0.2382 0.3722
γ = 0.1 0.0241 0.2184 0.2871 0.3865 0.0197 -0.1722 0.2247 0.4174
τ = 2
γ = −0.1 -0.0137 0.1452 0.2774 0.4012 -0.0109 -0.1528 0.2492 0.3458
γ = 0 0.0013 0.2015 0.1982 0.3208 0.0027 0.1346 0.2587 0.3635
γ = 0.1 0.0126 -0.1528 0.2498 0.4054 0.0265 0.2343 0.3481 0.4723

5 Real Data Analysis

Table 3: Estimations of Bladder Tumor Data

Coefficient Estimates Standard Deviation 95% Confidence Interval P-value
Initial number of tumors -0.0070 0.0450 (-0.0952, 0.0813) 0.8773
Cumulative number of tumors -1.4487 0.1589 (-1.7602, -1.1372) 0.0000
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Appendix
Proof of Mi(t; θ0) By conditional expectation, we have

E{dNi(t)} = E{E[dNi(t)|Zi(t)]}
= E{E[Yi(t)dN

∗
i (t)|Zi(t)]}

= E{E[Yi(t)|Zi(t)]E[dN∗
i (t)|Zi(t)]}

= E{[Yi(t)][(1− π(Wi(t))) exp{γ′
0Xi(t)}λ0(t)dt]}

= E{Yi(t)(1 + exp{β′
0Wi(t)})−1 exp{γ′

0Xi(t)}λ0(t)dt}

Therefore E{Mi(t; θ0)} = 0, that is, Mi(t; θ0) is a zero mean stochastic process.
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Proof of 1 Since
n∑

i=1

{Zi(s) − Z̄(s; θ)}Yi(s)(1 + exp{β′Wi(s)})−1 exp{γ′Xi(s)} = 0,

hence U(t; θ0) can be written as

U(t; θ0) =
n∑

i=1

∫ t

0

{Zi(s)− Z̄(s; θ0)}dMi(s; θ0)

=M̄Z(t)−
∫ t

0

Z̄(s; θ0)dM̄(s)

where M̄(t) =
∑n

i=1 Mi(t; θ0), M̄Z(t) =
∑n

i=1

∫ t

0
Zi(s)dMi(s; θ0) Similar to the proof of [7]

Appendix A.2, we know that n−1/2U(t; θ0) converges weakly, and its limiting distribution
has a mean of zero and variance-covariance matrix given in (8).

Proof of 2 For the existence, uniqueness, and consistency of θ̂:
let Â(θ) = −n−1∂U(τ ; θ)/∂θ′, since

U(τ ; θ) =

n∑
i=1

∫ τ

0

{Zi(s)− Z̄(s; θ)}dMi(s; θ)

then we have

A∗(θ) =n−1

n∑
i=1

∫ τ

0

{Zi(s)− Z̄(s; θ)}⊗2Yi(s)

[(1 + exp{β′Wi(s)})−1 exp{γ′Xi(s)dΛ0(s)]}

+ n−1

n∑
i=1

∫ τ

0

∂Z̄(s; θ)

∂θ′
dMi(s; θ)

(12)

For asymptotic normality, we have

n1/2(θ̂ − θ0) = A−1n−1/2U(τ ; θ0) + op(1) (13)

Therefore by (1), we have n1/2(θ̂−θ0) converges in distribution to a normal vector with
a mean of zero and variance-covariance matrix of A−1ΣA−1, with the variance-covariance
matrix can be consistently estimated by Â−1Σ̂Â−1.

Proof of 3 First for the consistency of Λ̂0(t):

Λ̂0(t)− Λ0(t) =n−1

n∑
i=1

∫ t

0

dMi(u; θ0)

S0(u; θ̂)
−
∫ t

0

SZ(u; θ
∗)′

S0(u; θ̂)
dui(θ̂, θ0) (14)

By the consistency of θ̂, we know that the last part of (14) consistently converges to 0.
Hence Λ̂0(t) in t ∈ [0, τ ] consistently converges a.e. to Λ0(t).

For the weak convergence of Λ̂0(t), we found that

n1/2{Λ̂0(t)− Λ0(t)} = n1/2{Λ̂0(t; θ̂)− Λ̂0(t; θ0)}+ n1/2{Λ̂0(t; θ)− Λ0(t)} (15)

By Taylor expansion of Λ̂0(t) at θ0, the first term on the right-hand side of (15) can be
written as

n1/2{Λ̂0(t; θ̂)− Λ̂0(t; θ0)} =
∂Λ̂0(t; θ0)

∂θ′
n1/2(θ̂ − θ0) + op(n

1/2∥θ̂ − θ0∥)
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By lemma 1 of [7] and strong law of large numbers, we have a.e.

sup
0≤t≤τ

∥∂Λ̂0(t; θ0)

∂θ
+B(t; θ0)∥ → 0

where B(t; θ0) is given by (10). By (1) and (13) we can know

n1/2(θ̂ − θ0) = A−1n−1/2

n∑
i=1

∫ t

0

Yi(u){Zi(u)− z̄(u; θ0)}dMi(u; θ0) + op(1)

then, for t we consistently have

n1/2{Λ̂0(t; θ̂)− Λ̂0(t; θ0)} =−B(t; θ0)
′A−1n−1/2

n∑
i=1

∫ t

0

Yi(u){Zi(u)− z̄(u; θ0)}dMi(u; θ0) + op(1)
(16)

On the other hand, for 0 ≤ t ≤ τ we can get

n1/2{Λ̂0(t; θ0)− Λ0(t)} = n−1/2

n∑
i=1

∫ t

0

∂Mi(u; θ0)

S0(u; θ0)

Hence by the lemma 1 in [7], for t it consistently holds that

n1/2{Λ̂0(t; θ0)− Λ0(t)} = n−1/2

n∑
i=1

∫ t

0

∂Mi(u; θ0)

s0(u; θ0)
+ op(1) (17)

Finally, by (15)-(17), for t we have

n1/2{Λ̂0(t; θ̂)− Λ0(t)} = n−1/2

n∑
i=1

Φi(t) + op(1) (18)

By (15), for fixed t, n1/2{Λ̂0(t; θ̂)−Λ0(t)} asymptotically follows the sum of zero mean iden-
tically independently distributed random variables. By multivariate central limit theorem,
n1/2{Λ̂0(t; θ̂)− Λ0(t)} weakly converges to a zero mean Gaussian process, and the covari-
ance function at (s, t) is given by Γ(s, t) = E{Φi(s)Φi(t)}. At the same time, consistent
estimation of Γ(s, t) is given by (11).
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On Bias Reduction for the Total
Least-Squares Estimate of a Conic Section

Within an EIV-Model

Burkhard Schaffrin1,∗ Kyle Snow1,2,†

1Geodetic Science Program, School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
2Topcon Positioning Systems, Inc., Columbus, Ohio, USA

Abstract For a straight line in 2D, it is well known that the Total Least-Squares (TLS) estimator
within an Errors-In-Variables (EIV) model generates the same solution as orthogonal regression, which
turns out to be (locally) unbiased.

Unfortunately, however, the adjustment of a conic section (such as a parabola in 2D) will, if
based on orthogonal regression, be biased within the standard EIV model. Here, an approach will be
investigated where TLS estimation is applied to a modified EIV model in order to account for the bias
that must otherwise be expected. The effect of such “bias reduction” will be illuminated in a realistic
example from geodesy, taken from a popular textbook.

Keywords Total Least-Squares; Errors-In-Variables modeling; orthogonal regression; bias reduction;
conic-section fitting

1 Introduction
In an early paper, Pearson [1], had shown how best-fitting lines or planes can be

obtained for point clouds in 2D or 3D with all their coordinates observed and thus random.
For more general curves, Deming [2, 3] found a best-fit solution by applying iterative
linearization to a nonlinear Gauss-Helmert Model (GHM). Such a solution became well-
known under the label “orthogonal regression.”

Much later, Linkwitz [4] showed that Pearson’s straight-line fit problem can equiva-
lently be described by an eigenvalue problem, thereby essentially anticipating the famous
Total Least-Squares (TLS) approach by Golub and van Loan [5] who used the framework
of an Errors-In-Variables (EIV) model. This equivalence between TLS adjustment and
“orthogonal regression” was also confirmed by Schaffrin and Wieser [6] for the case of data
with a fairly general dispersion matrix. More recently, Schaffrin [7] established more for-
mally certain equivalencies between the EIV-Model adjustment and various more classical
models, among them the nonlinear Gauss-Helmert Model (GHM).

Surprisingly, however, this equivalence seems to break down in the case of a relatively
trivial generalization, namely the best fit of a conic section (such as a parabola) within
the GHM versus a TLS adjustment within an EIV-Model, which turns out to contain a
certain bias unless it is taken into account by modifying the model equation accordingly.
This procedure will, however, lead to an adjusted curve with the residuals no longer being
perpendicular, thus different from the “orthogonal regression” solution.

∗Email: schaffrin.1@osu.edu
†Corresponding author. Email: ksnow6378137@gmail.com
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In the following, a brief overview will be given, with many more details (and examples)
to follow in a longer contribution.

2 Orthogonal regression for a parabola within a Gauss-
Helmert Model
For a point cloud in 2D, the x-, resp. y-coordinate values may be collected in the n×1

vectors
x := µx + ex and y := µy + ey, (1a)

where vectors µx and µy denote the “true” coordinates, and ex and ey are vectors of
random errors with [

ey
ex

]
∼ (

[
0
0

]
,

[
Σy 0
0 Σx

]
). (1b)

For the sake of simplicity, it is assumed that no correlations exist so that both Σx and
Σy are (nonsingular) diagonal matrices, i.e.,

Σx := Diag(σ2
x) and Σy := Diag(σ2

y), (1c)

where the n× 1 vectors σ2
x and σ2

y contain the squared standard deviations (variances) of
the random errors associated with the data vectors x and y, respectively.

Then, for each i ∈ {1, . . . , n}, the parabola can be expressed as

yi − eyi
= ξ0 + ξ1 · (xi − exi

) + ξ2 · (xi − exi
)2, (2a)

and, after introducing the 3× 1 parameter vector ξ := [ξ0, ξ1, ξ2]
T , in vector form as

b(ξ, ex, ey) := y − ey − [τ | x− ex | (x− ex) ∗ (x− ex)] · ξ = 0, (2b)

where τ := [1, . . . , 1]T denotes the n × 1 “summation vector” and the symbol ∗ denotes
the element-wise Hadamard product. Obviously, (2b) in conjunction with (1b) represent a
nonlinear Gauss-Helmert Model (GHM) that can be solved by iterative linearization until
convergence to the LEast-Squares Solution (LESS) occurs, using Px = Σ−1

x and Py = Σ−1
y

as weight matrices. Such a procedure was recently reviewed by Schaffrin and Snow [8]
in the context of Total Least-Squares regularization of Tykhonov type. As a result, the
residuals will be P -orthogonal to the adjusted parabola.

3 The corresponding Errors-In-Variables (EIV) Model
In this case, equation (2b) will be given the form

y − ey = (A− EA)ξ (3a)

with

A :=
[
τ x x ∗ x

]
(3b)

and

EA :=
[
0 ex 2(ex ∗ x)− (ex ∗ ex)

]
, (3c)

assuming zero-expectation for EA, and a linear error propagation for its covariance matrix,
leading to

Qapprox
A := D{eA := vecEA} =

0 0 0
0 Σx 2 ·Diag (µx) · Σx

0 2 ·Diag (µx) · Σx 4 ·Diag (µx ∗ µx) · Σx

 (4)
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as proposed by Hu et al. [9] for a related application. Here, “vec” denotes the vectorial
form of the n× 3 matrix EA, so that eA has size 3n× 1.

As it turns out, the resulting Total Least-Squares (TLS) solution has to use a singular
dispersion matrix, a case first described by Snow [10]. However, it will not coincide with
the “orthogonal regression” solution of section 2. So far, it is still unknown whether
“orthogonal regression” can be achieved in model (3a)–(3c) by a modified choice of the
dispersion matrix (4) (which is not exact anyway).

4 Modifying the EIV-Model for bias reduction
Not only is (4) only a first-order approximation, but also the assumption of zero-

expectation for EA is invalid, as a quick analysis, under the assumption of normality,
shows:

E{eA = vecEA} =

 0
0

2 · E{ex ∗ (µx + ex)} − E{ex ∗ ex}

 =

 0
0

E{ex ∗ ex} = vecd Σx

 ,
(5a)

where “vecd” denotes the vector that collects the diagonal elements of a matrix. In addi-
tion, the dispersion matrix results in its exact form:

QA := D{eA := vecEA} =

0 0 0
0 Σx 2 ·Diag (µx) · Σx

0 2 ·Diag (µx) · Σx 4 ·Diag (µx ∗ µx) · Σx + 2 · Σ2
x

 ,
(5b)

where the block in the lower-right corner differs from (4). But the most serious fact here is
that a bias is caused by not taking the nonzero-expectation from (5a) into account. This
can be done most easily by modifying the third column of the matrix A so that

Amod :=
[
τ x (x ∗ x)− Σx · τ

]
(6a)

is used instead of (3b), and

(EA)mod :=
[
0 ex 2(ex ∗ x)− (ex ∗ ex)− Σx · τ

]
, (6b)

in lieu of (3c). In the modified EIV-Model, due to (6a)–(6b), the target function for Total-
Least Squares adjustment is now based on quadratic forms of both ey and eA, and not on
those of ey and ex as in the GHM; therefore, the Total Sum of Squared Residuals (TSSR)
may not be directly comparable as it does not necessarily express the quality of fit in the
same way. In any case, it cannot be expected that the new residuals are P -orthogonal to
the adjusted parabola.

5 Conclusions
In the extended version of this contribution, two examples will be investigated that

use data from Neri et al. [11] and from Mikhail and Gracie [12], respectively. Numerical
comparisons will be made for the above described three models in regard to P -orthogonality
of the residuals, the TSSR in the form of Ω = eTxPxex +eTy Pyey, and the reduction of bias
as a consequence of using the modified EIV-Model.
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An illustrated philatelic introduction to
doubly-classic 6×6 bordered magic matrices

and to 4×4 Plato-like magic talismans

George P. H. Styan1,∗ Ka Lok Chu2,†

1McGill University, Montréal (Québec), Canada
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Abstract Our motivation in this talk is the 13th-century Anxi iron-plate doubly-classic 6×6 bordered
magic square discussed by Kai-Tai Fang in [5] at the 22nd International Workshop on Matrices and
Statistics in Toronto (IWMS-2013), and which we define by the matrix A as in display (2). We also
study the magic square in the “16th-century magical square in a manuscript” given on the “Bedouin
Silver: magical squares” website, and which we define by the matrix B as in display (3).

In his “Bordered magic squares” website, Harry White [23] observed that for such magic squares, in
all there are 140 “border groups”. Of these 140 we found 93 displayed in the literature. We identify all
140 and find that they occur in 70 pairs, with the matrices A and B forming one such pair. Moreover,
we find that the rank depends only on the rank of the inner 4×4 heart submatrix H, which is Plato-like
in that H = P+ hE, where P is the well-known Plato magic matrix and E has every entry equal to 1;
here h = 10. We end our talk by displaying some seals and talismans with Plato-like magic squares.

Keywords Anxi iron-plate doubly-classic 6 × 6 bordered magic square, magic matrices
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1 Anxi iron-plate and Bedouin-silver bordered magic squares
Our motivation in this talk is the 13th-century Anxi iron-plate doubly-classic 6×6 bor-

dered magic square discussed by Kai-Tai Fang [5] at the 22nd International Workshop on
Matrices and Statistics in Toronto (IWMS-2013). The Anxi iron-plate bordered 6×6 magic
square as in display (1) from Shea [18] and discussed by Baocong Qian [3, (1966/1985)]
and by Ho Peng Yoke [12, (1985)]. Our results build also on those by Hendricks [10, 11,
(1991/2005) ], Saenz de Cabezon [17, (2003/2011)], and White [23, (2009/2015)]; see also
Stifel [21, (1544)] and van Roode [14, 15, (2009/2011)], [16, 2010]. See also Styan & Chu
[22, (2015)].

We define the Anxi iron-plate bordered 6 × 6 magic square, as shown in display (1),
by the Anxi iron-plate bordered 6 × 6 magic matrix

A =



28 4 3 31 35 10

36 18 21 24 11 1

7 23 12 17 22 30

8 13 26 19 16 29

5 20 15 14 25 32

27 33 34 6 2 9


. (2)

We understand from Baidu [1] that the original Anxi iron-plate bordered 6× 6 magic
square is in the Shaanxi History Museum in Xi’an, China, where it is called the “Yuan
magic square iron Atlas”. Xi’an is the capital of Shaanxi province.

From Song Yuan shuxue shi lunwen ji [Collected Theses on the History of Chinese
Mathematics in the Song and Yuan Dynasties], by Baocong Qian [3, p. 264 (1966/1985)]
we find that “According to the book Mi Shu Jian Zhi, the astronomer Zhamaluding [Jamāl
al-Dı̄n (fl. c. 1255–1291)] calculated the calendar for the King of An Xi in 1278, with three
accompanying astronomers. These four astronomers apparently manufactured the iron
plate with the magic square on it. The iron plate was probably used to exorcise town
demons and evil spirits. At that time, Arabic numbers were not in widespread use and
had not been widely applied.” See also Ho Peng Yoke [12, (1985)].

Another bordered 6×6 magic square was given by Sigrid van Roode as a “16th-century
magical square in a manuscript” (Fig. 1 below) in her “Bedouin Silver: magical squares”
website [14, (2009/2011)]. We have found no other presentation of this “16th-century
magical square” in the literature.

We believe some entries are typos (see Fig. 2 below), and adjusting for these yields
our bordered 6 × 6 Bedouin-silver magic matrix

B =



2 31 33 34 10 1

29 18 21 24 11 8

30 23 12 17 22 7

5 13 26 19 16 32

9 20 15 14 25 28

36 6 4 3 27 35


. (3)
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Figure 1: “16th century magical square in a manuscript” [14]. See also Fig. 2.
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Figure 2: Annotated detail from “16th century magical square in a manuscript” (Fig. 1).

We recall the Anxi iron-plate bordered 6 × 6 magic matrix A as introduced in (2) above

A =


28 4 3 31 35 10

36 18 21 24 11 1

7 23 12 17 22 30

8 13 26 19 16 29

5 20 15 14 25 32

27 33 34 6 2 9

 (4)

and we see that both the Anxi iron-plate matrix A in (4) and the Bedouin-silver matrix B
introduced in (3) above are “doubly-classic” bordered magic matrices in that the 36 entries
are the 36 consecutive integers 1, 2, . . . , 36 and in addition, the 16 entries in the 4×4 “heart”
magic matrix (inner 4×4 submatrix) are the 16 consecutive integers 11, 12, . . . , 26, and so
the entries in the “frame” (or “border”) are the 10 integers 1, 2, . . . , 10 and the 10 integers
27, 28, . . . , 36. See also (6) below.
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2 Plato magic matrtix and the Shanghai Museum

11/11/2014 Museums in the Stamps

http://www1.chinaculture.org/chineseway/2008-10/23/content_315641_3.htm 2/3

 

 

Founded and first open to the public in the building previously of the horseracing club
at 325 W. Nanjing Road in 1952 and then moved into the former Zhonghui Building at
16 S. Henan Road in 1959, the museum developed very quickly in aspects of
acquisition, conservation, research, exhibition, education and cultural exchanges with
other institutes. In 1992, the Shanghai municipal government allocated to the
Museum a piece of land at the very center of the city, the People's Square, as its new
site. The whole construction took three years, from August 1993 to its inauguration on
October 12th, 1996. The 29.5 meters high new building has a construction space of
39,200 square meters.

Its unique architectural form of a round top with a square base, symbolizing the
ancient Chinese philosophy that the square earth is under the round sky, is a
distinguished architectural combination of traditional feature and modern spirit. The
present Shanghai Museum has eleven galleries and three special temporary exhibition
halls. It extends warm welcome to the visitors from all over the world.

 1 2 3 4 5 

 

 

  Gallery
     

 

Chinese cultural
relics lost abroad

(part 4)

 

Fifty Chinese and
French

artists build art
park

 

Cute stone lions go
virus online

 

Students get a
touch of traditional
culture in Beijing

 

  Quick Tags  
     

 

·Government
·Geography
·History
·Religion

 

·Opera
·Acrobatics
·Quyi
·Music

 

·Calligraphy
·Painting
·Crafts
·Architecture

 

·Food & Drinks
·Folk Way
·TCM
·Travel in China
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http://fqjdwlg.blog.163.com/blog/static/6061260520091012319158 2/9

      

                 Figure 1 Figure 2

2 . 1980 , the Shanghai Museum, in order to dig out of Shanghai Pudong Lujiazui

area during the Ming Dynasty tomb relics, discovered a fourth-order magic

square piece of jade (Figure 2),Four four vertical and horizontal map, the number

used here, from 1 to 16 , a total of sixteen numbers. They divided into four lines

arranged in vertical columns, rows and diagonals, all four numbers, the sum of,

and are 34 , Magic Square is the Ming Dynasty Muslim folk beliefs items, as to

avoid evil exorcism , Body purposes.

                                                     

                 Figure 3                                Figure 4

3 . 1957 , the palace ruins in Xi'an Yuan Anzai, the archaeological team found

five digits evacuation shaped cast iron, which unearthed during four two

sandwiched neatly chiseled square stone. 1273 the year of construction Anxi

palace, under pressure in the foundations, as evil, disaster prevention items. The

study, which is aligned with Arabic numerals sixty-six magic squares (Figure 3),

and its vertical, horizontal, and diagonal figures as " 111 . " The magic square is

applied Arabic numerals of the first kind of information on mathematics.

Magic square is an enigmatic and highly mathematical maze puzzle game,

it's a heavy door by a string of flash seems very complicated, but a great variety

of sophisticated comic lock " parameter Ng intricate " land locked, people went

maybe not difficult, but to go out easier said than done. Modern portfolio theory

magic square and technical level, although up to a considerable height, but

people always dare to say who has revealed the magic square answer.

In the Han Dynasty has three rows and three columns aspect diagram , each

row , each column and figures on the two diagonals are equal and 15, called "

Nine-palace count ", later known as " Los book . " This is the earliest in the world.

Latitude Fig .

Chinese ancient magic squares (vertical and horizontal map) - "Nine-palace

count" is a gem of Oriental culture. Since the reunification of China Han and

Tang prosperity, economic, trade and cultural exchanges in the process of

foreign Tinto Xinjiang, immigration, missionary, sailing, etc. with the opening of

the Silk Road, the ancient magic square computational problems across the

seas, east to Japan, Western Europe and sowing. Japanese treasure and called

10/26/2014 Introduction to Magic Squares (Appendix: wonderful magic square) - fqjdwlg log - Netease blog

http://fqjdwlg.blog.163.com/blog/static/6061260520091012319158 3/9

JiuGongTu count renamed " Japanese operator " , also fil l out a lot of the magic

square masterpiece. Westerners are more fascinated sensation throughout

academia, and called it a magic cube . Today, descendants of the magic

square in academic research which should lead the world.

Beizitou merely a magic square, which is 10 rows of 10 columns of 10 magic

square, because it esoteric connotations, loved by the people. Easy to search on

the Internet: the return of Macao hundred children monument (Figure 4), the

reunification Beizitou, Peking celebration Beizitou.

                                                             (This article is written based on

Internet data compilation)

Appendix:

            

        Luoshu a river map

          Luo Shu magic square two jade hanging

http://fqjdwlg.blog.163.com/blog/static/6061260520091012319158

my file (original & reprint versions, English & Chinese versions) =

https://dl.dropboxusercontent.com/u/62039800/Blog-EngChi-33pp.pdf

Figure 3: Plato magic matrix on a jade hanging and the Shanghai Museum.

Figure 4: Shanghai World Financial Center.

The Shanghai Museum, while excavating the Ming-dynasty tomb relics in 1980 from
the Shanghai Pudong Lujiazui (see Fig. 4), discovered a piece of jade (Fig. 3, left panel),
with a magic square as defined by our Plato magic matrix

P =


8 11 14 1

13 2 7 12

3 16 9 6

10 5 4 15

. (5)
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We found several instances of the Plato matrix P as defined in (5) above in the seminal
book Qanoon-e-Islam [19] first published in 1832. Moreover,

Cammann [4, Part 1, p. 202 (1969)] says that

with the possible exception of the magic square of [order] three
[our Plato matrix P (5)] became the most popular and best-known
magic square in the Islamic world, while

Hayashi [8, p. 166 (1987)] found [our Plato matrix P (5)] to be

the famous pandiagonal magic square of order four in Islam.

In addition, Cammann [4, Part 1, p. 202 (1969)] observed that

The ascription of magic squares to famous figures of the Classical World was
very common. al-Qazvini (d. 1283 AD) said that Archimedes invented magic
squares, and the well-known Sufi writer on mathematics Ahmad ibn ’Ali ibn
Yusuf al-Buni (d. 1225) ascribed the principal Islamic magic square of four [our
P (5)] to the philosopher and mathematician Plato (c. 428–348 BC). We have
no evidence to show that the classical Greeks had magic squares.

Abu Yahya Zakariya’ibn Muhammad al-Qazwini or Kazwini (1203–1283) was an Arab
or Persian physician, astronomer, geographer and proto-science fiction writer. Qazvini’s
famous Cosmography entitled Marvels of Creatures and the Strange Things Existing was
immensely popular and is preserved today in many copies. It was translated into his native
Persian language, and later also into Turkish. For some comments on magic squares in
“Kazwini’s Cosmography” see Baksalary, Chu, Puntanen & Styan [2, (2009)].

The Bedouin-silver matrix B defined in our (3) and the Anxi iron-plate A defined in
our (2) have the same “heart matrix” (6)

H =


18 21 24 11

23 12 17 22

13 26 19 16

20 15 14 25

 = P + 10E =


8 11 14 1

13 2 7 12

3 16 9 6

10 5 4 15

 + 10E (6)

where P is the so-called “Plato magic matrix” introduced in (5) above and E here is the
4 × 4 matrix with every entry equal to 1.

We will say that the heart matrix H defined in our (6) is Plato-like Type E. More
generally, we say that a magic matrix M is “Plato-like Type E” whenever

M = P + kE (7)

for some nonzero scalar k.
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Figure 5: This sheetlet from Israel featuring Plato and Aristotle (detail from Raphael’s
School of Athens) was apparently printed on 21.1.2009 (top right corner) but released only
in 2015.

In a diagram for a “puleeta (or lamp-charm) for casting out devils” in Shurreef’s
Qanoon-e-Islam [19, facing p. 224 (1832)] we found the Plato magic matrix P, as well as
the Plato-like Type E magic matrix


17 20 23 10

22 11 16 21

12 25 18 15

19 24 13 24

 = P + 9E. (8)
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3 Doubly-classic bordered 6× 6 magic matrices

3.1 Hendricks-normalized form and 10 small numbers
Following Hendricks [11] we define the “Hendricks-normalized” form for a doubly-classic
bordered 6 × 6 magic matrix to be

N =



u a1 a4 a3 a2 v

b1 h11 h12 h13 h14 b1

b2 h21 h22 h23 h24 b2

b4 h31 h32 h33 h34 b4

b3 h41 h42 h43 h44 b3

v a1 a4 a3 a2 u


(9)

where the 10 “small numbers”

a1, a2, a3, a4, b1, b2, b3, b4, u, v (10)

are an arrangement of the first 10 positive integers 1, 2, . . . , 10 with

a2 < a3 < a4, b1 < b2, b3 < b4, u < v. (11)

In (9) the overline denotes the complement from 37 and so

x = 37 − x; x = a1, a2, a3, a4, b1, b2, b3, b4, u, v. (12)

The heart matrix H in a doubly-classic bordered 6 × 6 fully-magic matrix (such as
the Anxi iron-plate matrix A (2) and the Bedouin-silver matrix B (3) ) is 10E plus any
classic 4 × 4 magic matrix, for which there are 8 × 880 choices. The corner entry u in
the frame of N (9) may be placed in any one of the 4 corners and then u = 37 − u
diagonally opposite; the corner entry v may then be placed in any one of 2 corners with
v = 37−v diagonally opposite. The non-corner entries a1, a4, a3, a2 between u and v may
be placed in 4! = 24 different ways and similarly for the non-corner entries b1, b2, b4, b3
between u and v. The remaining non-corner entries follow at once. We find, therefore,
8 × 880 × 4 × 2 × 24 × 24 = 32, 440, 320 possible doubly-classic bordered 6 × 6 magic
matrices for each Hendricks-normalized form frame. There are 140 such frames and hence
140 × 32, 440, 320 = 4, 541, 644, 800 possible doubly-classic bordered 6 × 6 magic matrices
in all.
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3.2 Anxi iron-plate A and Bedouin-silver B are partners

The Hendricks-normalized form for the Anxi iron-plate bordered 6 × 6 magic matrix A is

N(A) =



9 1 29 30 32 10

2 h11 h12 h13 h14 35

6 h21 h22 h23 h24 31

33 h31 h32 h33 h34 4

34 h41 h42 h43 h44 3

27 36 8 7 5 28


(13)

with

a1 = 1, a2 = 5, a3 = 7, a4 = 8; b1 = 2, b2 = 6; b3 = 3, b4 = 4; u = 9, v = 10, (14)

while for the Bedouin-silver magic matrix B and the Hendricks-normalized form N(B) are

B =



2 31 33 34 10 1

29 18 21 24 11 8

30 23 12 17 22 7

5 13 26 19 16 32

9 20 15 14 25 28

36 6 4 3 27 35


, N(B) =



1 10 31 33 34 2

7 h11 h12 h13 h14 30

8 h21 h22 h23 h24 29

28 h31 h32 h33 h34 9

32 h41 h42 h43 h44 5

35 27 6 4 3 36


(15)

with

a1 = 10, a2 = 3, a3 = 4, a4 = 6; b1 = 7, b2 = 8; b3 = 5, b4 = 9; u = 1, v = 2. (16)

At first glance the two matrices

N(A) =



9 1 29 30 32 10

2 h11 h12 h13 h14 35

6 h21 h22 h23 h24 31

33 h31 h32 h33 h34 4

34 h41 h42 h43 h44 3

27 36 8 7 5 28


, N(B) =



1 10 31 33 34 2

7 h11 h12 h13 h14 30

8 h21 h22 h23 h24 29

28 h31 h32 h33 h34 9

32 h41 h42 h43 h44 5

35 27 6 4 3 36


(17)

appear to be quite different, even though their parents have the same heart H = P+ 10E.
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We find, however, that the Anxi iron-plate matrixA (2) and the Bedouin-silver matrix
B (3) ) are “partners” in that

u(B) = ¯̄v(A), v(B) = ¯̄u(A) (18)

a
(B)
1 = ¯̄a

(A)
1 , a

(B)
2 = ¯̄a

(A)
4 , a

(B)
3 = ¯̄a

(A)
3 , a

(B)
4 = ¯̄a

(A)
2 (19)

b
(B)
1 = ¯̄b

(A)
4 , b

(B)
2 = ¯̄b

(A)
3 , b

(B)
3 = ¯̄b

(A)
2 , b

(B)
4 = ¯̄b

(A)
1 (20)

where the double-overbar indicates subtraction from 11, e.g., for (18)

u(B) = 1 = 11 − 10 = ¯̄v(A), v(B) = 2 = 11 − 9 = ¯̄u(A). (21)

We find that there are 70 such partner-pairs making a total of 140 doubly-classic bordered
6×6 magic matrices. In particular we find that the Anxi matrix A (our ID G-139) and the
Bedouin matrix B (our ID G-022) form such a partner-pair. Let w = max(u+v, 22−u−v).
Then



ID matrix a1 a2 a3 a4 b1 b2 b3 b4 u v w

G-139 Anxi A 1 5 7 8 2 6 3 4 9 10 19

G-022 Bedouin B 10 3 4 6 7 8 5 9 1 2 19

G-131 5 1 9 10 2 6 3 4 7 8 15

G-071 6 1 2 10 7 8 5 9 3 4 15

G-140 2 6 7 8 3 4 1 5 9 10 19

G-019 9 3 4 5 6 10 7 8 1 2 19

G-133 6 2 9 10 3 4 1 5 7 8 15

G-068 5 1 2 9 6 10 7 8 3 4 15

G-118 8 2 9 10 3 4 1 5 6 7 13

G-094 3 1 2 9 6 10 7 8 4 5 13



(22)

This confirms that the Anxi matrix A (G-139) and the Bedouin matrix B (G-022)
are partners and together form a partner-pair. In addition we find that there is another
partner-pair (G-131,G-071) with the same sets of b1, b2, b3, b4; in fact there is no other
such partner-pair. But we do find three partner-pairs with coincident b1, b2, b3, b4 though
we found no other such set of three partner-pairs. The remaining 130 (= 140 - 10, listed in
(22)), doubly-classic bordered 6 × 6 magic matrices comprise 14 double partner-pairs (56
= 14 × 2 × 2 matrices) and 37 single partner-pairs (74 =37 × 2 matrices).
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Figure 6: Quartz-rock crystal two-sided doubly Plato-like magic seal.

4 Further results
In our report [22] we present several more results concerning the 140 doubly-classic bor-
dered 6×6 magic matrices. In particular we prove that the rank is always 2 more than the
rank of the heart matrix. Moreover, we present images of various seals and talismans with
the Plato or with a Plato-like magic square. A discussion of the so-called [7] auspicious
number set 2 4 6 8 is also given and its use in the expeditious mailing of letters in the early
19th century [20].

In her beautiful book on Arabic and Persian Seals and Amulets in the British Museum
[13], Venetia Porter presents several seals and amulets with magic squares. In particular,
she presents images [13, Fig. A117, p. 167] of both sides of a quartz-rock crystal two-sided
doubly Plato-like magic seal in The British Museum, see our Fig. 6 above: “Oval, flattish
with bevelled sides. Damaged in places. Engraved both sides with a 4 × 4 magic square.”
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Abstract Late Professor Yanai has contributed to many fields ranging from aptitude diagnostics,
epidemiology, and nursing to psychometrics and statistics. This paper reviews some of his accomplish-
ments in multivariate analysis through his collaborative work with the present author, along with some
untold episodes for the inception of key ideas underlying the work. The various topics covered include
constrained principal component analysis, extensions of Khatri’s lemma, the Wedderburn-Guttman
theorem, ridge operators, decompositions of the total association between two sets of variables, and
ideal instruments. A common thread running through all of them is projectors and singular value
decomposition (SVD), which are the main subject matters of a recent monograph by Yanai, Takeuchi,
and Takane [35].

Keywords Projectors: Singular value decomposition (SVD); Constrained principal component anal-
ysis (CPCA); Khatri’s lemma; The Wedderburn-Guttman theorem; Ridge operators; Generalized con-
strained canonical correlation analysis; Confounding variables; Propensity scores; Instrumental vari-
ables

1 Introduction

Professor Yanai passed away due to prostate cancer in December, 2013 at the age of
73. A quick glance at his home page reveals that his contributions extend over 7 broad
categories, including aptitude diagnostics, test theories, educational psychology, epidemi-
ology, nursing, linear algebra, statistics, and multivariate analysis (MVA). Here we focus
on his contributions in the last category, namely multivariate analysis, through his collab-
orative works with me. Professor Yanai has been the most influential person in my career.
In particular, if I had not met him when I was in the third year of college, I would not have
been a statistician. We have 15 joint publications, including two books one in English [35]
and one other in Japanese. The specific topics we cover today are:

(1) Constrained principal component analysis (CPCA)
(2) Khatri’s lemma
(3) The Wedderburn-Guttman theorem
(4) Ridge operators
(5) Generalized constrained canonical correlation analysis
(6) Causal inference

Professor Yanai’s idea about MVA can be most succinctly summarized as “partitioning
the space of dimensionality n (the number of cases) into meaningful subspaces” identified by
some external information or by some internal criterion (Takeuchi, Yanai, and Mukherjee
[27]). Two major tools for partitioning are:

(1) Projectors

∗Corresponding author. Email: yoshio.takane@mcgill.ca

Souvenir Booklet of the 24th International Workshop on Matrices and Statistics, 
25-28 May 2015, Haikou, Hainan, China. Pages 228-237. Ed. Jeffrey J. Hunter. 
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(2) Singular value decomposition (SVD)

which are the main subject matters of a recent monograph by Yanai, Takeuchi, and Takane
[35]. As is well known, projectors are used to partition the space of observation vectors on
criterion variables into subspaces that can and cannot be explained by predictor variables,
and SVD seeks to find the subspace most representative of the original subspace.

Before we begin, let us introduce some basic notations we use throughout this paper:

Let Sp(X) denote the space spanned by column vectors of X, and let Ker(X′) denote the
orthogonal complement subspace to Sp(X). Let

PX = X(X′X)−X′ (1)

denote the orthogonal projector onto Sp(X), and let

QX = I−PX (2)

denote the orthogonal projectors onto Ker(X′). Then,

P′
X = PX , Q′

X = QX (symmetric).
P2

X = PX , Q2
X = QX (idempotent).

PXQX = QXPX = O (orthogonal).

These projectors are useful in partitioning y, the vector of observations on the dependent
variable in regression analysis, into PXy, the portions of y that can be accounted for by
the predictor variables X, and QXy, the portions of y that cannot be accounted for by X.

Slight generalizations of the I-orthogonal projectors above lead to K-orthogonal pro-
jectors, which are useful in weighted least squares (LS) estimation in regression analysis:
Let K be an nnd matrix such that rank(KX) = rank(X). Then,

PX/K = X(X′KX)−X′K, (3)

and
QX/K = I−PX/K (4)

are called K-orthogonal projectors onto Sp(X and Ker(X′), respectively, with respect to
the metric matrix K.

These projectors have properties similar to those of the I-orthogonal projectors:

(KPX/K)′ = KPX/K , (KQX/K)′ = KQX/K (K-symmetric).

P2
X/K = PX/K , Q2

X/K = QX/K (idempotent).

P′
X/KKQX/K = Q′

X/KKPX/K = O (K-orthogonal).

These projectors are useful in weighted LS (WLS) estimation in regression analysis. When
K is set to K = PZ , the K-orthogonal projectors effect instrumental variable estimation.
See Yanai [33] for other types of projectors.

2 Constrained Principal Component Analysis (CPCA)

In as early as 1970, Professor Yanai (Yanai [32]) proposed so-called partial principal
component analysis (PPCA) to extract components unrelated to certain prescribed effects
such as differences in gender, age, levels of education, etc., which amounts to SVD of QGY

(where Y is the matrix of criterion variables, andG the matrix of predictor variables whose
effects are to be eliminated). This process consists of two phases, decomposingY int PGY

and QGY, and applying SVD to the latter. While Yanai himself did not explicitly suggest
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the SVD of PGY, it was known as redundancy analysis, a special case of reduced-rank
regression. The two phases may be called External and Internal Analyses.

Similarly, CPCA consists of two major phases: External Analysis and Internal Analy-
sis. External Analysis decomposes the main data matrix according to the external informa-
tion about the row and columns of a data matrix, which amounts to projections. Internal
Analysis further analyses the decomposed matrices into components, which is equivalent
to SVD (singular value decomposition).

In CPCA, we consider not only the row-side constraints, G, but also the column-side
constraints H, analogously to growth curve models (Potthoff and Roy [12]). This leads to
a four-way decomposition of the main data matrix Y (Takane and Shibayama [20]):

Y = PGYPH +QGYPH +PGYQH +QGYQH . (5)

A similar decomposition is also possible with K-orthogonal projectors.

The decomposition above is a very basic one. When G and/or H consist of more than
one set of variables, finer decompositions of Y are possible, corresponding to analogous
decompositions of PG and.or PH (e.g., Takane [17]; Takane and Yanai [21]):

Let G = [M,N], for example. Then,

(1) PG = PM +PN ⇔ M′N = O. (M and N are mutually orthogonal.)
(2) PG = PM +PN −PMPN ⇔ PMPN = PNPM . (M and N are mutually orthogonal,

except their common space, e.g., ANOVA w/o interactions). (3) PG = PM +PQMN =
PN +PQNM . (Fit one first and the other to the residuals from the fist).

(4) PG = PM/QN
+PN/QM

⇔ rank(G) = rank(M) + rank(N). (M and N are disjoint.
Fit both simultaneously).

(5) PG = PGA +PG(G′G)−B ⇔ A′B = O, and Sp(A)⊕ Sp(B) = Sp(G′). (A matrix of
regression coefficients C constrained by C = AC∗ or by B′C = O).

The first four decompositions above were noted in Rao and Yanai [13], while (5) is due to
Yanai and Takane [34]. Analogous decompositions are possible for PH , PG/K , and PH/L.

In Internal Analysis, on the other hand, we apply PCA to terms obtained by the
external analysis, e.g., PGYPH , which amounts to SVD(PGYPH), whose computation
time can be economized considerably by the following procedure:

A theorem on SVD(PGYPH) (Takane and Hunter [18]): Let FG and FH be columnwise
orthogonal matrices such that Sp(G) = Sp(FG) and Sp(H) = Sp(FH). Then, PGYPH =
FGF

′
GYFHF′

H . Let SVD(F′
GYFH) be denoted as UDV′, and let SVD(FGF

′
GYFHF′

H)
be denoted as U∗D∗V∗′

. Then, U∗ = FGU, V∗ = FHV, and D∗ = D.

3 Khatri’s Lemma

Toward the end of 1980’s, I was interested in the relationships among various methods
of constrained correspondence analysis (CCA), a special case of CPCA. When I looked
through the literature on CCA, I found that there were two ways of incorporating the
constraints. Let U denote the row representation matrix. (For explanation, we consider
only the row side constraints.) Two equivalent ways of constraining U are: (1) U = AU∗

(e.g., ter Braak [28]), and (2) B′U = O (e.g., Böckenholt and Böckenholt [1]), where A

and B are mutually orthogonal, and jointly span the entire row space of a contingency
table. The relationship is rather trivial, i.e.,

PA = A(A′A)−A′ = I−B(B′B)−B′ = QB, (6)
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if the identity metric is used. I was not sure what would happen if non-identity metric
K is used. Khatri’s lemma states the exact relationship for this case (Takane, Yanai, and
Mayekawa [26]):

Let A (p × r) and B (p × (p − r)) be matrices such that rank(A) = r, rank(B) = p − r,
and A′B = O. Then (Khatri [9]),

I = A(A′KA)−1AK+K−1B(B′K−1B)−1B′, (7)

where K is a symmetric pd (positive definite) matrix.

Several remarks are in order on Khtri’s original lemma given above. Khatri’s lemma
may sometimes be expressed in an alternative form:

K = KA(A′KA)−1AK+B(B′K−1B)−1B′. (8)

Note also that K and K−1 are interchangeable. Khatri’s lemma is useful for rewriting
P-type projectors into Q-type projectors (LaMotte [11]; Shapiro [15]; Seber [14]; Takane
and Zhou [24]; Verbyla [30]). Khatri’s lemma has been generalized in various ways, e.g.,
let K be square, but not necessarily symmetric or nonsingular, but Sp(B) ⊂ Sp(K) and
Sp(B) ⊂ Sp(K′). Then (Khatri [10]),

K = KA(A′KA)−A′K+B(B′K−B)−B′. (9)

Professor Yanai (Yanai and Takane [34]) further extended Khatri’s lemma as follows;
Let A (p× r) and B (p× (p− r)) be matrices such that rank(A) = r and rank(B) = p− r,
and let M and N be nnd matrices such that

(i) A′MNB = O,
(ii) rank(MA) = rank(A),
(iii) rank(NB) = rank(B).

Then,
I = A(A′MA)−A′M+NB(B′NB)−B′. (10)

This reduces to the original lemma when M = K and N = K−1. Takane [17] further
extends it to a rectangular K.

4 The Wedderburn-Guttman (WG) Theorem

The Wedderburn-Guttman (WG) theorem is stated as follows: Let Y (n × p) be of
rank r, and let A (n× s) and B (p× s) be such that A′YB is invertible. Then,

rank(Y1) = rank(Y)− rank(YB(A′YB)−1A′Y) (11)

= rank(Y)− rank(A′YB) = r − s, (12)

where
Y1 = Y −YB(A′YB)−1A′Y. (13)

Wedderburn [31] first proved the theorem for s = 1. Guttman [5] extended it for s > 1.
Guttman [6] further proved the reverse, i.e., Y1 must be of the above form to satisfy the
rank condition stated above.

Guttman [5] used the matrix rank method for a proof of the above theorem. In this
method, we apply a series of elementary block matrix operations to a matrix to derive a
rank formula. We apply another series of elementary block matrix operations to the same
matrix to derive another rank formula. Neither operations change the rank of the original
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matrix, so the two must be equal. Guttman’s proof is given in the appendix. Yongge
Tian (many papers) derived many interesting rank formula based on this method. It is
intriguing to find that Guttman [5] already used the method in 1944 (cf. Khatri [8]).

My initial interest in this theorem stemmed from Hubert’s talk (Hubert, Meulman,
and Heiser [7]) at the 1989 Meeting of the Psychometric Society at Illinois. This talk
was to criticise the ignorance of numerical analysts (e.g., Chu, Funderlic, and Golub [2])
about Guttman’s contributions (Guttman [5, 6]) in the WG theorem. When the talk was
over, I asked a question: When A′YB is not invertible, can we replace it by a generalized
inverse? I had a feeling that it was possible, while Hubert said it was probably impossible.
It has turned out that both of us are only half correct. The answer is yes, but it requires
a condition. I initially thought this was purely a rank additivity (subtractivity) problem.
That is, we are to prove that

rank(Y −YB(A′YB)−A′Y)

= rank(Y)− rank(YB(A′YB)−A′Y). (14)

This supposition also included that

rank(YB(A′YB)−A′Y) = rank(A′YB) (15)

always holds. However, Tian and Styan [29] showed the following always holds:

rank(Y −YB(A′YB)−A′Y) = rank(Y)− rank(A′YB). (16)

This implies that (15) requires a condition, as does (14), and that the two conditions are
equivalent.

The necessary and sufficient (ns) condition is stated as follows (Takane and Yanai
[22]): Let C = B(A′YB)−A′. Then, the ns condition for (14) and (15) to hold is:

YCYCY = YCY. (17)

There are a number of equivalent conditions, e.g., (YCYY−)2 = YCYY− ⇔ (Y−YCY)2

= Y−YCY. There are also a number of interesting sufficient (but not necessary) condi-
tions, e.g., (YC)2 = YC or (CY)2 = CY, and CYC = C (Cline, Funderlic, and Golub
[3]; Galantai [4]). The latter is even stronger than the idempotency of YC or CY.

The WG theorem states the rank condition for the residual matrix. However, from a
data analytic viewpoint, the decomposition of the data matrix Y the theorem implies is
even more interesting:

Y = YB(A′YB)−A′Y + (Y −YB(A′YB)−A′Y). (18)

Takane and Hunter [19] developed a new family of CPCA almost exclusively based on this
decomposition. The second term of the above decomposition involves a Q-type projector,
but it can be replaced by a P-type projector as follows (Takane [17]): Let Ã, B̃ be matrices
such that

(i) Sp(Ã) ⊂ Sp(Y),
(ii) Sp(B̃) ⊂ Sp(Y′),
(iii) rank(A′YB) + rank(B̃′Y−Ã) = rank(Y),
(iv) A′YY−Ã = A′Ã = O,
(v) B̃′Y−YB = B̃′B = O.

Then,
Y = YB(A′YB)−A′Y + Ã(B̃′Y−Ã)−B̃′. (19)
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5 Ridge Operators

In the mid 2000’s, I was interested in extending the ridge-type of regularized least
squares (RLS) estimation to various multivariate (MV) techniques. These extensions were
rather straightforward, and I wrote most of the papers on them with my graduate students.
I did not have to bother Professor Yanai. However, as I applied the RLS to so many MV
procedures, I thought it would be important to write a paper on ridge operators, which
was a common thread running through all of them (Takane [16, 23]).

The simplest form of ridge operators is defined as:

RX(λ) = X(X′X+ λPX′)−X′, (20)

where PX′ = X′(XX′)−X is the orthogonal projector onto Sp(X′). (PX′ = I if X is
columnwise nonsingular.) This operator arises in the RLS estimation minc = φλ(c) in
regression analysis, where φλ(c) = SS(e) + λSS(c)P

X′ and e = y −Xc. (We assume, w/o
loss of generality, that Sp(c) ⊂ Sp(X′).)

The RX(λ) and SX(λ) have properties similar to those of PX and QX , where SX(λ) =
I−RX(λ). For example:

RX(λ) and SX(λ) are symmetric and invariant over the choice of a g-inverse of (X′X+
λPX′).

RX(λ)KX(λ)RX(λ) = RX(λ) (i.e., KX(λ) = RX(λ)+.).
RX(λ)−RX(λ)2 = RX(λ)SX(λ) = SX(λ)RX(λ) ≥ O.
RX(λ)KX(λ) = PX , etc.

Similar decompositions of RX(λ) to those of PX are also possible.

The ridge operators defined above can be rewritten as follows using a ridge metric
matrix defined below: Let

KX(λ) = PX + λ(XX′)+ (Ridge Metric Matrix). (21)

Then, RX(λ) can be rewritten as:

RX(λ) = X(X′KX(λ)X)−X′. (22)

The simple ridge operators introduced above can be generalized into generalized ridge
operators:

R
(W,L)
X (λ) = X(X′WX+ λL)−X′W, (23)

where L is an nnd matrix such that Sp(L) ⊂ Sp(X′), and W is an nnd matrix such that
rank(WX) = rank(X). As before, the generalized ridge operators can be rewritten as
follows using a generalized ridge metric matrix defined below: Let

K
(W,L)
X (λ) = PX + λX(X′WX)−L(X′WX)−X′W. (24)

Then,

R
(W,L)
X (λ) = X(X′WK

(W,L)
X (λ)X)−X′W. (25)

6 Generalized Constrained Canonical Correlation Analysis

In the external analysis of CPCA, a data matrix is decomposed into several compo-
nents by external information. I initially thought we could do the same in generalized
constrained canonical correlation analysis (CANO). We decompose X and Y (the matrix
of observations on the two sets of variables) separately into several orthogonal components,

Yoshio Takane

233



and then choose one term from each decomposition, and apply CANO to the pair, which
amounts to SVD of the product of the orthogonal projectors. It has turned out that this
strategy will not do.

CANO analyzes total association between X and Y, i.e., tr(PXPY ). However, X =
M + N, where M′N = O does not guarantee PX = PM + PN . This may be contrasted
with a similar situation in which X = [M,N], where M′N = O, in which case we indeed
have PX = PM+PN . This suggests that we need orthogonal decompositions of orthogonal
projectors to derive additive decompositions of the total association.

Takane, Yanai, and Hwang [25] derived the following two orthogonal decompositions
of P[X,G] by combining two orthogonal decompositions ((3) and (5)) of the orthogonal
projector given in the CPCA section:

(1) Let A, B, and W be matrices such that Sp(A) = Ker(H′X′PGX), Sp(B) =
Ker(H′X′QGX), and Sp(W) = Ker(X′G). Then,

P[X,G] = PPGXH +PPGXA +PQGXH +PQGXB +PGW . (26)

(2) Let K, U, and V be matrices such that Sp(K) = Ker(H′X′X), Sp(U) = Ker(G′XH),
and Sp(V) = Ker(G′XK). Then,

P[X,G] = PPXHG +PXHU +PPXKG +PXKV +PQXG. (27)

We can derive similar decompositions of P[Y,GY ] (The subscript Y is put on G to
indicate that this is a G for Y.) We take one term each from a decomposition of P[X,GX ]

and that of P[Y,GY ], and apply SVD to the product of the two, e.g.,

SVD(PQGX
XHX

PY HY UY
). (28)

7 Causal Inference

Causal inference is one of the most important roles of statistics. This was the topic of
our conversation when I met him last in the fall of 2013. When randomization is unavail-
able, there are a lot of pitfalls in establishing causal relationships based on correlational
relationships alone. One crucial aspect of the problem is how to eliminate the effects of
confounding variables.

The easiest way is to include the effects of the confounding variables in regression
analysis along with the predictor variable of interest, although this is easier said than
done. Identifying the set of confounding variables is not so easy, although here we assume
that they are known. Let y denote the criterion variable, let x: denote the predictor
variable of interest, and let U denote the matrix of confounding variables. The suggested
regression model can be written as:

y = xa1 +Uc+ e1. (29)

The ordinary least squares (OLS) estimate of xa1 is given by

xâ1 = Px/Qu
y (30)

.

Consider next the regression of x onto U, i.e.,

x = Ud+ e2. (31)

Professor Yanai and Multivariate Analysis

234



The OLS estimate of Ud is given by

Ud̂ = PUx. (32)

We call PUx linear propensity scores. Residuals from the above regression QUx represent
the portions of x left unaccounted for by U.

We now consider using PUx instead of U in the first regression, i.e.,

y = xa2 +PUxb+ e3. (33)

The OLS estimate of xa2 is given by

xâ2 = Px/QPUx
y, (34)

where QPUx = I−PUx(x
′PUx)

−1x′PU .

Since
QPUxx = x−PUx(x

′PUx)
−1x′PUx = QUx, (35)

we obtain
Px/QPUx

y = Px/QU
y. (36)

This means (30) and (34) are equivalent. This gives the rationale for replacing U by PUx.
The latter is more convenient because it is a single variable, and matching on a single
variable is much easier than matching on multiple variables.

More recently, methods of of causal inference based on instrumental variables are
getting popular. An instrumental variable z has the following properties:

(1) z′U = 0 (z and U are uncorrelated),
(2) z′x 6= 0 (z and x are correlated),
(3) z′Q[U,x]y = 0 (i.e., z has a predictive power on Y only through x).

How is z related to PUx or QUx?

Assume z = cQUx, where c is a normalization factor. This z satisfies (1) and (2)
above. That it also satisfies (3) can be seen from:

(1/c)z′Q[U,x]y = x′QUQ[U,x]y = x′Q[U,x]y = 0. (37)

Consider the regression model:

y = xa3 + e4. (38)

The IV estimate of xa3 is given by

xâ3 = Px/Pz
y = Px/QU

y. (39)

Since Pz = QUx(x
′QUx)

−1x′QU and x′Pz = x′QU , this is identical to (30) and (34). This
implies that the z defined above is an ideal IV.

8 Conclusions

This paper overviewed Professor Yanai’s contributions to MV analysis. He adamantly
emphasized linear algebraic aspects of MV analysis. His framework was grad, yet easy to
understand. After almost half a century since I got to know him, I am still working within
the framework of Professor Yanai.
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9 Appendix: The Matrix Rank Method used by Guttman

The following is the proof of the original WG theorem by Guttman [5]. Let

C =

[

Is (A′YB)−1A′Y

YB Y

]

, E =

[

I O

−YB I

]

,

F =

[

I −(A′YB)−1A′Y

O I

]

.

Then,

ECF =

[

Is O

O Y1

]

,

so that
rank(C) = s+ rank(Y1). (40)

On the other hand, let

G =

[

I −(A′YB)−1

O I

]

, H =

[

I O

−B I

]

.

Then,

GCH =

[

O O

O Y

]

,

so that
rank(C) = rank(Y). (41)

We obtain the WG theorem by combining (40) and (41).
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Predictions under general linear
random-effects model with coefficient

restrictions and new observations

Yongge Tian∗

CEMA, Central University of Finance and Economics, Beijing 100081, China

Abstract Assume a general linear model y = Xβββ+εεε is given with coefficient vector βββ satisfying βββ =
Aααα+γγγ and Bβββ = b, and new observations in the future follow the linear model yf = Xfβββ+εεεf . This note
aims at establishing the best linear unbiased predictor (BLUP) of the vector φφφ = Fααα+Gγγγ+Hεεε+Hfεεεf
of all unknown parameters in the two models from the original observation vector y under a most
general assumption on the covariance matrix among the random vectors γγγ, εεε and εεεf . Through solving
a constrained quadratic matrix-valued function optimization problem, we obtain a group of analytical
formulas for calculating the BLUP of φφφ and its covariance matrix operations. In particular, many
special cases of the BLUP, as well as some fundamental decomposition equalities of the BLUP are
established under various assumptions.

Keywords Random-effects model; BLUP; covariance matrix; decomposition equality

1 Introduction
Consider a general linear random-effects model with parameter restrictions

y = Xβββ + εεε, βββ = Aααα+ γγγ, Bβββ = b, (1.1)

where in the first-stage model,

y ∈ Rn×1 is a vector of observable random variables,

X ∈ Rn×p is a known matrix of arbitrary rank,

εεε ∈ Rn×1 is a vector of unobservable random variables (measurement errors),
in the second-stage model,

βββ ∈ Rp×1 is a vector of unobservable random variables,

A ∈ Rp×k is known matrix of arbitrary rank,

ααα ∈ Rk×1 is a vector of fixed but unknown parameters (fixed effects),

γγγ ∈ Rp×1 is a vector of unobservable random variables (random effects),
and in the third matrix equation,

B ∈ Rp×k is known matrix of arbitrary rank,

b ∈ Rq×1 is a known vector with b ∈ range(BA).
Further, assume that new observations in the future follow the model

yf = Xfβββ + εεεf , (1.2)
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where

yf ∈ Rnf×1 is a vector of new observations (unknown),

Xf ∈ Rnf×p is a known model matrix associated with the new observations,

εεεf ∈ Rnf×1 is a vector of measurement errors associated with new observations,

βββ ∈ Rp×1 is the same as in (1.1).
In the investigation of restricted linear models, (1.1) is usually handled by transforming
into an implicitly restricted model. The most popular transformation is combining the
three parts in (1.1) as

ŷ = X̂βββ + ε̂εε = X̂Aααα+ X̂γγγ + ε̂εε, ŷ =

[
y
b

]
, X̂ =

[
X
B

]
, ε̂εε =

[
εεε
0

]
; (1.3)

while combining (1.2) and (1.3) gives

ỹ = X̃βββ + ε̃εε = X̃Aααα+ X̃γγγ + ε̃εε, ỹ =

 y
b
yf

 , X̃ =

 X
B
Xf

, ε̃εε =

 εεε0
εεεf

. (1.4)

In order to establish a unified theory on statistical inferences of (1.4), we assume that the
expectation and covariance matrix of the combined random vector in (1.4) are given by

E

 γγγεεε
εεεf

 = 0, Cov

 γγγεεε
εεεf

 =

ΣΣΣ11 ΣΣΣ12 ΣΣΣ13

ΣΣΣ21 ΣΣΣ22 ΣΣΣ23

ΣΣΣ31 ΣΣΣ32 ΣΣΣ33

 := ΣΣΣ, (1.5)

where we don’t attach any further restrictions to the patterns of the submatrices ΣΣΣij in
(1.5), although they are usually taken as certain prescribed forms for a specified random-
effects model in statistical literatures. Correspondingly, the covariance matrix of the com-
bined random vector ŷ in (1.3) is given by

Cov(ŷ) = Cov(X̂γγγ + ε̂εε) = ZΣΣΣZ′, Z = [ X̂, În, 0 ], În =

[
In
0

]
. (1.6)

This Cov(ŷ) is a known matrix under the assumptions in (1.1) and (1.2), and will occur
in the statistical inference of (1.3) and (1.4).

Random-effects models are statistical models of parameters that vary at more than
one level, which have different names in data analysis according to their origination, such
as, multilevel models, hierarchical models, nested models, random parameter models, split-
plot designs, etc. The first two equations in (1.1) is also called a nested linear model or
two-stage hierarchical linear model in statistical literature, both of which are called the
first-stage model and the second-stage model, respectively. Note from (1.4) and (1.5) that
under the general assumptions in (1.1)–(1.5), ŷ and yf are correlated. Hence, it is possible
to give predictions of yf , Xfβββ, and εεεf in (1.2) from the original observation vector ŷ in (1.3)
under the assumptions in (1.1)–(1.5). In order to obtain some general results on BLUPs
of unknown parameters under random-effects models, we construct a vector involving all
unknown parameters in (1.4) as follows

φφφ = Fααα+ Gγγγ + Hεεε+ Hfεεεf , (1.7)

where F ∈ Rs×k, G ∈ Rs×p, H ∈ Rs×n, and Hf ∈ Rs×nf are known matrices. In this case,

E(φφφ) = Fααα, Cov(φφφ) = JΣΣΣJ′, Cov{ŷ, φφφ } = ZΣΣΣJ′, J = [G, H, Hf ]. (1.8)
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Eq. (1.7) includes all vector operations in (1.1)–(1.4) as its special cases. For instance, if

F = TX̃A, G = TX̃, H =

T0
0

, and Hf =

 0
0
T

, then (1.7) becomes φφφ = TX̃Aααα +

TX̃γγγ+Tε̃εε = Tỹ, which includes y, yf , and ỹ as its special cases. Thus, statistical inference
of φφφ is a comprehensive work, and will play prescriptive role for various special statistical
inference problems under (1.4) from both theoretical and applied points of view. Note
that there are 14 given matrices in (1.1)–(1.5) and (1.7). Hence, statistical inference of φφφ
is not easy task, and we will encounter many tedious matrix operations for the given 14
matrices, as demonstrated in Section 3 below.

The present author recently developed an algebraic method in [7] for deriving best
linear unbiased predictors (BLUPs) of general vectors of all unknown parameters in linear
random-effects models. Based this method, we are now able to give analytical formulas
for calculating the BLUP of φφφ in (1.7) under the general assumptions as in (1.1)–(1.5),
and use the formulas to deal with various classic and new statistical inference problems on
random-effects models. As an ongoing approach on BLUPs under general linear random-
effects models, this paper aims at establishing a general theory on the BLUP of φφφ in (1.7).
In particular, we shall derive

(I) analytical expression of the BLUP of φφφ;
(II) additive decomposition the BLUP of φφφ;

(III) various formulas related to the covariance matrices of the BLUP of φφφ.

2 Preliminaries
Before proceeding, we introduce the notation to the reader and explain its usage in

this paper. Rm×n stands for the collection of all m × n real matrices. The symbols A′,
r(A) and R(A) stand for the transpose, the rank and the range (column space) of a
matrix A ∈ Rm×n, respectively. Im denotes the identity matrix of order m. The Moore–
Penrose inverse of A, denoted by A+, is defined to be the unique solution X satisfying
the four matrix equations AGA = A, GAG = G, (AG)′ = AG, and (GA)′ = GA. PA,
EA, and FA stand for the three orthogonal projectors (symmetric idempotent matrices)
PA = AA+, EA = A⊥ = Im − AA+, and FA = In − A+A, where EA and FA satisfy
EA = FA′ and FA = EA′ . Two symmetric matrices A and B of the same size are said to
satisfy the Löwner partial ordering A < B if A−B is nonnegative definite.

The following lemma is well known; see [4].

Lemma 1. The linear matrix equation AX = B is consistent if and only if r[A, B ] =
r(A), or equivalently, AA+B = B. In this case, the general solution of the equation can
be written in the following parametric form X = A+B + ( I − A+A )U, where U is an
arbitrary matrix.

We also need the following formulas on ranks of matrices; see, e.g., [2, 6].

Lemma 2. Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.1)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.2)

r

[
AA′ B
B′ 0

]
= r[A, B ] + r(B). (2.3)
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If R(A′1) ⊆ R(B′1), R(A2) ⊆ R(B1), R(A′2) ⊆ R(B′2) and R(A3) ⊆ R(B2), then

r(A1B
+
1 A2) = r

[
B1 A2

A1 0

]
− r(B1), (2.4)

r(A1B
+
1 A2B

+
2 A3) = r

 0 B2 A3

B1 A2 0
A1 0 0

− r(B1)− r(B2). (2.5)

The following result on analytical solutions of a constrained matrix-valued function
optimization problem was given in [7].

Lemma 3. Let
f(L) = (LC + D )M(LC + D)

′
s.t. LA = B, (2.6)

where A ∈ Rp×q, B ∈ Rn×q, C ∈ Rp×m, D ∈ Rn×m and N = N′ ∈ Rn×n are given,
M ∈ Rm×m is nnd, and the matrix equation LA = B is consistent. Then there always
exists a solution L0 of L0A = B such that

f(L) < f(L0) (2.7)

holds for all solutions of LA = B. In this case, the matrix L0 satisfying (2.7) is determined
by the following consistent matrix equation

L0[A, CMC′A⊥ ] = [B, −DMC′A⊥ ]. (2.8)

In this case, the general expression of L0 and the corresponding f(L0) are given by

L0 = argmin
LA=B

f(L) = [B, −DMC′A⊥ ][A, CMC′A⊥ ]+ + V[A, CMC′ ]⊥, (2.9)

f(L0) = min
LA=B

f(L) = KMK′ −KMC′(A⊥CMC′A⊥)+CMK′, (2.10)

f(L)− f(L0) = (LCMC′A⊥ + DMC′A⊥)(A⊥CMC′A⊥)+(LCMC′A⊥ + DMC′A⊥)′,

(2.11)

where K = BA+C + D, and V ∈ Rn×p is arbitrary.

3 Main results
In order to establish the theory of the BLUP of (1.7) under (1.3), we need the following

concepts. A linear statistic Lŷ under (1.3), where L ∈ Rs×(n+q), is said to have the same
expectation with φφφ in (1.7) if and only if E (Lŷ −φφφ) = 0 holds. In this case, if there exists
an L0 such that

E(L0ŷ −φφφ) = 0 and Cov (Lŷ −φφφ ) < Cov (L0ŷ −φφφ ) s.t. E (Lŷ −φφφ) = 0 (3.1)

hold, then the linear statistic L0ŷ is defined to be the BLUP of φφφ in (1.7), and is denoted
by L0ŷ = BLUP(φφφ).

Lemma 4. The vector φφφ in (1.7) is predictable by ŷ in (1.3) if and only if

R[(X̂A)′] ⊇ R(F′). (3.2)

Proof. It is obvious that E (Lŷ −φφφ ) = 0 ⇔ LX̂Aααα − Fααα = 0 for all ααα ⇔ LX̂A = F.
From Lemma 1, the matrix equation is consistent if and only if (3.2) holds.
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Theorem 5. Assume that φφφ in (1.7) is predictable by ŷ in (1.3), namely, (3.2) holds, and

let În, Z, and J be as given in (1.6) and (1.8). Then

E (Lŷ −φφφ ) = 0 and Cov (Lŷ −φφφ ) = min⇔ L[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] = [F, JΣΣΣZ′(X̂A)⊥ ].
(3.3)

The matrix equation in (3.3) is consistent as well under (3.2). In this case, the general
solution of L and BLUP(φφφ) can be written as

BLUP(φφφ) = Lŷ =
(

[F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ + U[ X̂A, ZΣΣΣZ′(X̂A)⊥ ]⊥
)
ŷ,

(3.4)
where U ∈ Rs×(n+q) is arbitrary. Further, the following results hold.

(a) r[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] = r[ X̂A, ZΣΣΣ ], R[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] = R[ X̂A, ZΣΣΣ ], and

R(X̂A) ∩R[ZΣΣΣZ′(X̂A)⊥] = {0}.
(b) L is unique if and only if r[ X̂A, ZΣΣΣ ] = n.

(c) BLUP(φφφ) is unique with probability 1 if and only if ŷ ∈ R[ X̂A, ZΣΣΣ ], i.e., (1.3) is
consistent.

(d) The covariance matrix of BLUP(φφφ) is

Cov[BLUP(φφφ)] = [F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ZΣΣΣZ′

×([F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+)′, (3.5)

the covariance matrix between BLUP(φφφ) and φφφ is

Cov{BLUP(φφφ), φφφ} = [F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ZΣΣΣJ′, (3.6)

the difference of the covariance matrices of φφφ and BLUP(φφφ) is

Cov(φφφ)− Cov[BLUP(φφφ)] = JΣΣΣJ′

−[F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ZΣΣΣZ′([F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+)′,

(3.7)

the covariance matrix of the difference of φφφ and BLUP(φφφ) is

Cov[φφφ− BLUP(φφφ) ] =
(

[F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+Z− J
)

ΣΣΣ

×
(

[F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+Z− J
)′
. (3.8)

Proof. Note that

Lŷ −φφφ = LX̂Aααα+ LX̂γγγ + Lε̂εε− Fααα−Gγγγ −Hεεε−Hfεεεf

= (LX̂A− F)ααα+ (LX̂−G)γγγ +
(
LÎn −H

)
εεε−Hfεεεf .

Hence,

Cov (Lŷ −φφφ ) = Cov
(

(LX̂−G)γγγ +
(
LÎn −H

)
εεε−Hfεεεf

)
= [LX̂−G, LÎn −H,−Hf ]ΣΣΣ[LX̂−G, LÎn −H,−Hf ]′

= (L[ X̂, În, 0 ]− [G, H, Hf ])ΣΣΣ(L[ X̂, În, 0 ]− [G, H, Hf ])′

= (LZ− J)ΣΣΣ(LZ− J)′ := f(L). (3.9)
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In this case, we see from Lemma 1 that the first part of (3.3) is equivalent to finding a

solution L0 of the consistent matrix equation L0X̂A = F such that

f(L) < f(L0) s.t. LX̂A = F (3.10)

holds in the Löwner partial ordering. Further from Lemma 3, there always exists s so-
lution L0 of L0X̂A = F such that (3.10) holds, and the L0 is determined by the matrix

equation L0[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] = [F, JΣΣΣZ′(X̂A)⊥ ], establishing the matrix equation in
(3.3). Solving the equation by Lemma 1 gives the L in (3.4). Also from (2.10),

f(L0) = Cov(L0ŷ −φφφ ) = Cov(φφφ− L0ŷ ) = (L0Z− J)ΣΣΣ(L0Z− J)′,

establishing (3.8). Result (a) is well known. Result (b) follows directly from (3.4). Taking
covariance matrix of (3.4) yields (3.5). From (1.7) and (3.4),

Cov{BLUP(φφφ), φφφ} = Cov{Lŷ, φφφ} = LCov{ŷ, φφφ}
= [F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ZΣΣΣJ′,

establishing (3.6). Eq. (3.7) follows from (1.8) and (3.5).

Because the BLUP of φφφ in (1.7) and the covariance matrix operations in Theorem 5
are derived directly from definition and analytical operations of the 14 given matrices, a
solid mathematical foundation is really established for the statistical inference of BLUPs
under random-effects models with with coefficient restrictions and new observations. In
the light of the basic formulas in Theorem 5, we are now able to derive many new and
valuable consequences on mathematical and properties of BLUPs under various conditions.

Corollary 6. The following results hold.

(a) If φφφ in (1.7) is predictable by ŷ in (1.3), then Tφφφ is predictable by ŷ in (1.3) as well
for any matrix T ∈ Rt×s, and BLUP(Tφφφ) = TBLUP(φφφ) holds.

(b) If φφφ in (1.7) is predictable by ŷ in (1.3), then Fααα is estimable by ŷ in (1.3) as well,
and the BLUP of φφφ can be decomposed as the sum

BLUP(φφφ) = BLUE(Fααα) + BLUP(Gγγγ) + BLUP(Hεεε) + BLUP(Hfεεεf ), (3.11)

and the following formulas for covariance matrices hold

Cov{BLUE(Fααα), BLUP(Gγγγ + Hεεε+ Hfεεεf )} = 0, (3.12)

Cov[BLUP(φφφ)] = Cov[BLUE(Fααα)] + Cov[BLUP(Gγγγ + Hεεε+ Hfεεεf )]. (3.13)

(c) If ααα in (1.7) is estimable under (1.3), then the φφφ in (1.7) is predictable by ŷ in (1.3).
In this case,

BLUP


ααα
γγγ
εεε
εεεf

 =


BLUE(ααα)
BLUP(γγγ)
BLUP(εεε)
BLUP(εεεf )

 , (3.14)

BLUP(φφφ) = FBLUE(ααα) + GBLUP(γγγ) + HBLUP(εεε) + HfBLUP(εεεf ). (3.15)
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Proof. The estimability of Tφφφ follows from R[(X̂A)′] ⊇ R(F′) ⊇ R(F′T′). Also from
(3.4),

BLUP(Tφφφ) =
(

[TF, TJΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ + U[ X̂A, ZΣΣΣZ′(X̂A)⊥ ]⊥
)
ŷ

= T
(

[F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ + U1[ X̂A, ZΣΣΣZ′(X̂A)⊥ ]⊥
)
ŷ

= TBLUP(φφφ),

where U = TU1, establishing the equality in (a).

Note that [F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ in (3.4) can be decomposed as

[F, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+

= [F, 0 ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ + [0, [G, 0, 0]ΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+

+[0, [0, H, 0]ΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+

+[0, [0, 0, Hf ]ΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+

= BLUE(Fααα) + BLUP(Gγγγ) + BLUP(Hεεε) + BLUP(Hfεεεf ),

establishing (3.11). We also obtain from (3.4) the covariance matrix between BLUE(Fααα)
and BLUP(Gγγγ + Hεεε+ Hfεεεf ) as follows

Cov{BLUE(Fααα), BLUP(Gγγγ + Hεεε+ Hfεεεf ) }
= [F, 0 ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ZΣΣΣZ′([0, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+)′. (3.16)

Applying (2.5) to (3.16) and simplifying, we obtain

r(Cov{BLUE(Fααα), BLUP(Gγγγ + Hεεε+ Hfεεεf ) })

= r
(

[F, 0 ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+ZΣΣΣZ′([0, JΣΣΣZ′(X̂A)⊥ ][ X̂A, ZΣΣΣZ′(X̂A)⊥ ]+)′
)

= r


0

[
(X̂A)′

(X̂A)⊥ZΣΣΣZ′

] [
0

(X̂A)⊥ZΣΣΣJ′

]
[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] ZΣΣΣZ′ 0

[F, 0 ] 0 0


−2r[ X̂A, ZΣΣΣZ′(X̂A)⊥ ]

= r


[

0 0

0 −(X̂A)⊥ZΣΣΣZ′(X̂A)⊥

] [
(X̂A)′

0

] [
0

(X̂A)⊥ZΣΣΣJ′

]
[ X̂A, 0 ] ZΣΣΣZ′ 0
[F, 0 ] 0 0


−2r[ X̂A, ZΣΣΣZ′ ]

= r

 0 (X̂A)′

X̂A ZΣΣΣZ′

F 0

+ r[ (X̂A)⊥ZΣΣΣZ′(X̂A)⊥, (X̂A)⊥ZΣΣΣJ′ ]− 2r[ X̂A, ZΣΣΣZ′ ]

= r

[
X̂A
F

]
+ r

[
(X̂A)′

ZΣΣΣZ′

]
+ r[ X̂A, ZΣΣΣZ′(X̂A)⊥, ZΣΣΣJ′ ]

−r(X̂A)− 2r[ X̂A, ZΣΣΣZ′ ] (by (2.3))

= r[ X̂A, ZΣΣΣZ′, ZΣΣΣJ′ ]− r[ X̂A, ZΣΣΣZ′ ]

= r[ X̂A, ZΣΣΣZ′ ]− r[ X̂A, ZΣΣΣZ′ ] = 0,
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which implies that Cov{BLUE(Fααα), BLUP(Gγγγ + Hεεε + Hfεεεf ) } is a zero matrix, estab-
lishing (3.12). Eq. (3.13) follow from (3.11) and (3.12). Eqs. (3.14) and (3.15) follow from
(a) and (3.11).

Corollary 7. Let ΣΣΣ and Z be as given in (1.5) and (1.6), and assume that

φφφ1 = F1ααα+ G1γγγ + H1εεε+ Hf1εεεf , φφφ2 = F2ααα+ G2γγγ + H2εεε+ Hf2εεεf

are predictable under (1.4), where F1, F2 ∈ Rs×k, G1, G2 ∈ Rs×p, H1, H2 ∈ Rs×n, and
Hf1, Hf2 ∈ Rs×nf are known matrices, and denote Ji = [Gi, Hi, Hfi ], i = 1, 2. Then, the
following results hold.

(a) The sum φφφ1 +φφφ2 is predictable under (1.4), and its BLUP satisfies

BLUP(φφφ1 +φφφ2) = BLUP(φφφ1) + BLUP(φφφ2). (3.17)

(b) BLUP(φφφ1) = BLUP(φφφ2) ⇔ F1 = F2 and R(ZΣΣΣJ′1 − ZΣΣΣJ′2) ⊆ R(X̂A).

Proof. Eq. (3.17) follows from Corollary 6(a) and (3.11). From Theorem 5, the two
equations for the coefficient matrices of BLUP(φφφ1) = L1ŷ and BLUP(φφφ2) = L2ŷ are given
by

L1[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] = [F1, J1ΣΣΣZ′(X̂A)⊥ ], L2[ X̂A, ZΣΣΣZ′(X̂A)⊥ ] = [F2, J2ΣΣΣZ′(X̂A)⊥ ].

The pair of matrix equations have a common solution iff

r

[
X̂A ZΣΣΣZ′(X̂A)⊥ X̂A ZΣΣΣZ′(X̂A)⊥

F1 J1ΣΣΣZ′(X̂A)⊥ F2 J2ΣΣΣZ′(X̂A)⊥

]
= r[X̂A, ZΣΣΣZ′(X̂A)⊥, X̂A, ZΣΣΣZ′(X̂A)⊥], (3.18)

where

r

[
X̂A ZΣΣΣZ′(X̂A)⊥ X̂A ZΣΣΣZ′(X̂A)⊥

F1 J1ΣΣΣZ′(X̂A)⊥ F2 J2ΣΣΣZ′(X̂A)⊥

]

= r

[
X̂A ZΣΣΣZ′(X̂A)⊥ 0 0

0 0 F2 − F1 (J2ΣΣΣZ′ − J1ΣΣΣZ′)(X̂A)⊥

]
= r[ X̂A, ZΣΣΣZ′(X̂A)⊥] + r[F2 − F1, (J2ΣΣΣZ′ − J1ΣΣΣZ′)(X̂A)⊥ ],

r[X̂A, ZΣΣΣZ′(X̂A)⊥, X̂A, ZΣΣΣZ′(X̂A)⊥] = r[X̂A, ZΣΣΣZ′(X̂A)⊥].

Hence (3.18) is equivalent to [F2 − F1, (J2ΣΣΣZ′ − J1ΣΣΣZ′)(X̂A)⊥ ] = 0, which is further
equivalent to (b).

Finally, we give some decomposition equalities of the BLUP of ỹ in (1.4).

Corollary 8. The vector ỹ in (1.4) is predictable by ŷ in (1.3) if and only if R[(X̂A)′] ⊇
R[(XfA)′]. In this case, Bβββ is predictable by ŷ in (1.3), and the following decomposition
equalities hold

BLUP(ỹ) =

 y
b

BLUP(yf )

 =

 BLUP(Xβββ) + BLUP(εεε)
BLUP(Bβββ)

BLUP(Xfβββ) + BLUP(εεεf )


=

 BLUE(XAααα) + BLUP(Xγγγ) + BLUP(εεε)
BLUE(BAααα) + BLUP(Bγγγ)

BLUE(XfAααα) + BLUP(Xfγγγ) + BLUP(εεεf )

. (3.19)
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All these decomposition equalities can also be regarded as built-in restrictions to
BLUPs under random-effects models, which demonstrate some elegant properties of BLUP-
s. Some previous discussions on built-in restrictions to BLUPs can be found, e.g., in [1, 3, 5].
The decomposition equalities in (3.19) are so fundamental that they will play control role
in statistical inferences of general linear regression models. It is expected that decomposi-
tion equalities like (3.19) can always be established for observed response random vectors
with respect to BLUEs/BLUPs under various types of linear regression model, and many
new conclusions on statistical inferences of regression models can be derived under the
control of these decomposition equalities.
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Abstract Tensor-valued data are being encountered increasingly more commonly, in the biologi-
cal, natural as well as the social sciences. The learning of the unknown model parameter vector
given such data, involves covariance modelling of such data, though this can be difficult owing to the
high-dimensional nature of the data, where the numerical challenge of such modelling can only be
compounded by the largeness of the available data set. Assuming such data to be modelled using a
correspondingly high-dimensional Gaussian Process (GP), the joint density of a finite set of such data
sets is then a tensor normal distribution, with density parametrised by a mean tensor M (that is of
the same dimensionality as the k-tensor valued observable), and the k covariance matrices Σ1, ...,Σk.
When aiming to model the covariance structure of the data, we need to estimate/learn {Σ1...Σk} and
M , given tha data. We present a new method in which we perform such covariance modelling by
first expressing the probability density of the available data sets as tensor-normal. We then invoke
appropriate priors on these unknown parameters and express the posterior of the unknowns given the
data. We sample from this posterior using an appropriate variant of Metropolis Hastings. Since the
classical MCMC is time and resource intensive in high-dimensional state spaces, we use an efficient
variant of the Metropolis-Hastings algorithm–Transformation based MCMC–employed to perform ef-
ficient sampling from a high-dimensional state space. Once we perform the covariance modelling of
such a data set, we will learn the unknown model parameter vector at which a measured (or test) data
set has been obtained, given the already modelled data (training data), augmented by the test data.

Keywords Bayesian inference; Tensor-normal distribution; High-dimensional data

1 Introduction
Let the causal relationship between observable V and model parameter S be defined as
V = ξ(S), where V is tensor-variate: V ∈ Rm1×m2...×mk . We want to estimate value s(test)

of S at which test data D(test)–i.e. measured value(s) of V –is (are) realised. To do this, we
need to learn function ξ(·), which in this case is a tensor-variate function–of the model pa-
rameter vector S ∈ Rd. In the presence of training data D, such supervised learning can be
possible by fitting known parametric forms (such as splines/wavelets) to the training data
to learn the form of ξ(·), which can thereafter be inverted and operated upon the test data
to yield s(test). Here, training data D is this set of n values of V , each generated at a design

point, i.e. a chosen value s(∗) of S. Thus, D := {(v1, s(∗)1 ), . . . , (vn, s
(∗)
n )}. However, fitting

with splines/wavelets is inadequate in that it does not capture the correlations between

∗Email: kw202@le.ac.uk
†Email: dc252@le.ac.uk
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the components of a high-dimensional function; also, the computational complications of
such fitting–and particularly of inversion of the learnt ξ(·)–increases rapidly with increase
in dimensionality. Thus, we resort to the modelling of this high-dimensional data using a
correspondingly high-dimensional Gaussian Process (GP), i.e. a tensor-variate GP.

2 Method
Thus, the joint probability distribution of a set of n realisations of the k − 1-variate V is
a k-variate normal distribution with mean M and k covariance matrices:

p(V |M ,Σ1, ...,ΣK) ∝ exp(−‖(V −M)×1 A
−1
1 ×2 A

−1
2 ...×k A

−1
k ‖

2/2) (1)

where the covariance matrix Σp = ApA
T
p ,p = 1, ..., k. Tensor-variate normal distribution

is extensively discussed in the literature, (Xu, Yan & Yuan [4]; Hoff [1])

Equation 1 implies that the likelihood of n values (v1,v2, . . . ,vn) of V given the
unknown tensor-variate parameters of the GP is k-tensor variate normal. So, we write
this likelihood and thereafter the posterior probability density of these unknown tensor-
variate parameters given the training data (subsequent to the invoking of the priors on
each unknown). Once this is achieved, we then sample from the posterior using an MCMC
technique to achieve marginal density distributions of each uknown. The learning of s(test)

could be undertaken by writing the posterior predictive distribution of S given the test data
v(test), and given the tensor-variate parameters learnt using the training data. However,
we decide to write the joint posterior probability density of s(test) and all the other tensor-
variate parameters given training+test data, and sample from this density to obtain the
marginals of all the unknowns.

The first step is to write the likelihood of D given the tensor-variate mean and co-
variance matrices of the GP. Here the mean matrix is M ∈ Rm1×m2...×mk . It may be
possible to estimate the mean as a function of s and be removed from the non-zero mean
model. Under these circumstance, a general method of estimation, like maximum likeli-
hood estimation or least square estimation, can be used. Then, the Gaussian Process can
be converted into a zero mean GP. However, if necessary, the mean tensor itself can be re-
garded as a random variable and learnt from the data [3]. The modelling of the covariance
structure of this GP is discussed in the following subsection.

2.1 Covariance structure

In this context, it is relevant that a k-dimensional random tensor Σ ∈ Rm1×m2...×mk can
be decomposed to a unit random k dimensional tensor (Z) and k number of covariance
matrix by Tucker product [1]:

Σ = Z ×1 Σ1 ×2 Σ2...×k Σk (2)

where the p-th covariance matrix is mp×mp matrix and mp ∈ Z>0, mp ∈ {m1,m2, . . . ,mk}
for the tensor Σ that is m1 ×m2 × . . .×mk-dimensional .

We choose to model the covariance structure of the GP with a Squared Exponential
(SQE) covariance function. The implementation of this can be expressed in different ways,
but in this initial phase of the project, we perform parametrisation of the covariance
structure using the Tucker Product that has been extensively studied[1]. It is recalled that
the SQE form can be expressed as

p(V |M ,Σ1, ...,Σk) = (2π)−m/2(
k∏

i=1

|Σi|−m/2mi)×exp(−‖(V −M)×1A
−1
1 ×2A

−1
2 ...×kA

−1
k ‖

2/2)

(3)
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where m =
∏k

i=1mi and Σp = ApA
T
p .

Although this probability density function is well structured and can in principle be
used to model high dimensional data, the computational complicacy increases with large
and/or high-dimensional data sets. If we do not implement a particular parametric model
for the covariance kernels but aim to learn each element of each covariance matrix, the total

number of parameters in the covariance structure to be then learnt, ends up as
k∑

p=1

m2
p. This

could be a big number for a large data set and the computational demand on such learning
can be formidable. Also, the computational task of inverting the covariance matrix Σp is
in itself highly resource intensive, with the demand on time and computational resources
increasing with the dimensions of Σp, p = 1, . . . , k.

3 Application
We perform an empirical illustration of our method, to first learn the covariance structure
of a large astronomical training data set, and thereafter, employ such learning towards
the prediction of the value of the unknown model parameter at which the test data is
realised. The training data comprises has 216 observations, where an observation consti-
tutes a sequence of 2-dimensional vectors. In fact, each such 2-dimensional vector is a
2-dimensional velocity vector of a star that is a neighbour of the Sun, as tracked within
an astronomical simulation [2] of the disk of our Galaxy. There are 50 stars tracked at
each design point i.e. at each assigned value of the unknown model parameter vector, that
is in this application is the location of the Sun in the two-dimensional, (by assumption),
Milky Way disk. In other words, S itself is a 2-dimensional vector. There are 216 design
points used to generate this (simulated) training data that then constitutes 216 number
of 50×2-dimensional velocity matrices, with each velocity matrix generated at each of the
216 design points in this training data. Thus, the training data D in this application is
216× 50× 2-dimensional 3-tensor

To reduce the difficulty of MCMC algorithm, the mean tensor is estimated by the
maximum likelihood estimation.

When building the covariance structure of this training data set, the likelihood of
which is now 3-tensor-normal, we consider three covariance matrices. Of these, the 216×
216-dimensional covariance matrix Σ1 bears information about the correlation between
velocity matrices generated at the 216 different values of S, i.e. at the 216 different solar
locations in the Milky Way disk. The 50 × 50 covariance matrix Σ2 illustrates the corre-
lation between any pair of the 50 stars at a given s, that are tracked in the astronomical
simulation and the last covariance matrix Σ3 represents the correlation between the 2
components of the velocity vector of a star that is tracked at a given s for its velocty in
the astronomical simulation. If we learn the elements of each covarianc matrix directly, we
will have 216 × 216 + 50 × 50 + 2 × 2 number of parameters to learn, which is too many
given limits of time and computational resourse. Thus, we model the covariance kernels
using known forms, the parameters of which we then learn from the data.

In particular, we use the Squared Exponential (SQE) covariance function to model
the 216 × 216 matrix Σ1 and learn the correlation lengths–or rather their reciprocals,
the smoothing parameters–using the training data. As the 216 velocity matrices are each
generated at a respective value of S, Σ1 can be written as Σ1 = [aij ] where i, j = 1, . . . , 216
with

aij = exp
[
− (si − sj)T Q1 (si − sj)

]
,
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where Q1 is a d× d square diagonal matrix, with S ∈ Rd. As d = 2 in our application, we
learn 2 smoothness parameters.

The covariance matrix Σ2 quantifies correlation amongst the different stellar velocity
vectors generated at a given s. The 50 stellar velocity vectors that are recorded at a given
s are chosen over other values of stellar velocity vectors. Given that the velocity vector of
each star is 2-dimensional, we again learn 2 smoothness parameters (diagonal elements of
matrix Q2), using an SQE model.

In addition we learn the 4 parameters of the covariance matrix Σ3.

Thus, we will have 8 parameters (q
(1)
11 ,q

(1)
22 ,q

(2)
11 ,q

(2)
22 ,σ

(3)
11 ,σ

(3)
12 ,σ

(3)
21 ,σ

(3)
22 ) of the covariance

structure to learn from the data, where these parametersare defined as in:

Q1 =

(
q
(1)
11 0

0 q
(1)
22

)
;Q2 =

(
q
(2)
11 0

0 q
(2)
22

)
; Σ3 =

(
σ
(3)
11 σ

(3)
12

σ
(3)
21 σ

(3)
22

)
In the initial phase of the project that is currently underway, we write the joint posterior
probability density of the unknown parameters and sample from it using a variant of the
metropolis-Hastings algorithm, referred to as Transformation-based MCMC (TMCMC).
To write the posterior, we impose uniform priors on each of our unknowns.

Table 1: Priors for parameters

Parameters Prior

q
(1)
11 Uniform π(q

(1)
11 ) ∝ 1

q
(1)
22 Uniform π(q

(1)
22 ) ∝ 1

q
(2)
11 Uniform π(q

(2)
11 ) ∝ 1

q
(2)
22 Uniform π(q

(2)
22 ) ∝ 1

Σ3 Non-informative π(Σ3) ∝ |Σ3|−1/2

The proposal density that we use in our MCMC scheme, to generate updates for each
of our parameters is tabulated within the section in which TMCMC is described. The
results of our learning and estimation of the mean and covariance structure of the GP
used to model this tensor-variate data, is discussed below in Section 5. Once this phase of
the work is over, we will proceed to include the test and training data both, to write the
joint posterior probability density of s(test) and the 8 unknowns in Q1,Q2,Σ3, and learn
all these parameters.

4 Transformation based MCMC
We are using the Transformation based MCMC algorithm to estimating the parameters.
Although the TMCMC method will lose some of the information, the method is efficient
in high dimensional distributions.

• 1.Set initial value s0, q
(1)
0 , . . . , q

(k)
0 , counter n = 1 and a forward probability p0, . . . , pk

• 2.Generate e ∼ Gamma(1, 1) and u ∼ U(0, 1) independently.
• 3.If u < p0, let s′ = sn−1 + β0e. Else, let s′ = sn−1 − β0e
• 4.Repeat step 2 and step 3 for q′1, . . . , q

′
k.

• 5.Calculate the acceptance rate:

α =

∏
i∈D pi ×

∏
j∈Dc(1− pj)∏

i∈D(1− pi)×
∏

j∈Dc pj
× posterior(s′, q′1, ...q

′
k)

posterior(sn−1, q
(1)
n−1, ...q

(k)
n−1)
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where, set D is the elements which has the backward transform(u > p) and set Dc is
the elements which has the forward transform(u <= p).

• 6.Accept s′, q′1, . . . , q
′
k as sn, q

(1)
n , ..., q

(k)
n with probability α or drop s′, q′1, . . . , q

′
k with

probability 1− α
• 7.Repeat 2 to 6 until the chain get convergence.

5 Results
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Figure 1: trace of the likelihood generated by
TMCMC
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Figure 2: marginal probability density for q
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Figure 3: marginal probability density for
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Figure 4: marginal probability density for

σ
(3)
12 in full line and σ

(3)
21 in broken line

In the top left panel of Figure 1, we present the trace of the likelihood of the training
data given the 8 unknowns in Q1,Q2,Σ3, with 2 × 104 of iterations. The stationarity of
the trace betrays the achievement of convergence of the chain.

The marginal posterior probability densities of each unknown parameter is also learnt

using TMCMC. The same for parameters q
(1)
11 (Figure 2), σ11 (Figure 3) and σ12 (Figure
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4)are shown in the top right and bottom left and right panels. As noticed in the inequality
of the marginals of the non-diagonal elements of Σ3 shown in the bottom panels of this
figure, the covariance structure for this astronomical data set does not appear to adhere
to stationarity. Had the covariance been stationary, the 1, 2-th and 2, 1-th elements would
be equal, i.e. their marginals would coincide. But such is not the case as evident from
comparing the two density in figure 4 which shows a drift from σ12 to σ21. This further
suggests that our modelling of the Σ2 matrix using SQE covariance function is pre-matured.
We are exploring the implementation of non-stationary covariance modelling of s.
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Abstract In this paper, a new sampler is proposed to obtain independent and identically distributed
samples from a given univariate or multivariate distribution kernel. The sampler is called randomized
likelihood sampling (RLS) because it randomizes the likelihood and it selects samples according to the
likelihood of the target distribution. RLS utilizes the uniformity of a quasi-random sequence to search
the support,and applies randomization to achieve independence. Because the likelihood is computed
from a kernel of the target distribution, RLS has wide applicability. For example, RLS can sample
multimodal kernels without getting stuck in localities. A bootstrap procedure is proposed to compute
the Monte Carlo error. Some numerical comparisons are reported.

Keywords Bootstrap; Good lattice points; Markov chain Monte Carlo; Monte Carlo error; Sampling
importance resampling.

1 Background and Introduction
Generating independent and identically distributed (IID) samples from a probability

density function (pdf) is an ancient but also modern topic for both statistics and computer
science, see the recent developments of Markov Chain Monte Carlo (MCMC). The algo-
rithms of such tasks are called samplers, which can be categorized as either pdf-specific
or general-purpose. For example, the Box-Muller algorithm is specific for one-dimensional
normal pdf, and the Chelosky decomposition applies only for the multivariate normal distri-
butions. On the other end, the accept-reject method (ARM) is applicable to any univariate
pdf, but its performance, such as accuracy, rejection rate and consistency, will depend on
the proposal pdf being selected. Distribution-inversion method is another general-purpose
algorithm conditioned on that the distribution function can be explicitly inverted.

Sampling multivariate pdf is much more involved than sampling univariate pdf, and
the task is further complicated by the cases that the normalizing constants may not be
available, only density kernels are known. For example, the predictive function is unknown
in many Bayesian models. When only kernel, not density, is available, pdf-specific samplers
are limited to distributions that are commonly used, such as the normal family and those
related to the multivariate exponential distribution. Metropolis-Hastings algorithm (MH)
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is the first general-purpose sampler, and it has advanced the Bayesian calculations by leaps
and bounds. Similar to ARM, MH requires a proposal pdf that proposes one candidate
to be accepted as a sample or rejected. A large amount of research has been devoted to
the design of a proposal pdf which must balance between a decent acceptance rate and
fast exploration of the support. Often, decent proposal distribution is problem-dependent.
Another general-purpose sampler is Rubin’s [3] sampling importance/resampling (SIR)
sampler, and it re-samples from a large pool of candidates that are generated from some
proposal distribution. Poor choice of proposal can make SIR inadequate. The fundamental
differences between MH and SIR are (a) MH is a MCMC that generates Markov-dependent
samples, while SIR generates IID samples; and (b) MH accepts/rejects one candidate, while
SIR accepts samples from many candidates. Both samplers are considered to be general-
purpose, nevertheless custom-made proposals are required to generate efficient samples.

Here, we propose a general-purpose sampler such that (a) it does not require a pro-
posal pdf, hence, it is problem-independent; (b) it selects multiple samples from a pool
of candidates; (c) it generates IID samples; (d) the bias of a fixed sample sizes can be
corrected; and (e) the Monte Carlo Error (MCE) can also be estimated. We name it
randomized likelihood sampling (RLS) with bootstrap. The key ingredients for RLS are
uniformly distributed points (UD) over the support and random-shift of UD. RLS begins
with a quasi-random sequence as the candidates’ pool, then iterates among the following
three steps: (i) it computes the likelihood of all the candidates; (ii) then it randomly selects
multiple samples from the candidates’ pool via their likelihoods; and last (iii) it creates
a new pool of candidates by randomly shifting the current pool. The likelihoods are a
discrete approximation to the continuous pdf, and UD is known to be efficient for such
applications, see Fang and Wang [1] and Hua and Wang [2]. With a good UD, the size of
the pool needs not be large. From every pool, a batch (multiple) of samples are selected,
and one sample from every batch constitutes an IID sample.

In section 2, we detail the approach. In section 3, we use a mixture of univariate
normal distribution to illustrate the bias-correction and MCE of RLS. Section 4 gives
some discussions.

2 Randomized Likelihood Sampling
Let π(x) be the target pdf whose support S is d-dimensional. Function f is a density

kernel of π if and only if f(x)/f(y) = π(x)/π(y) for all x,y ∈ S. RLS constitutes of the
following steps:

1. (compact region). Properly choose ai < bi, i = 1, . . . d, such that probability Pr(x ∈
D ∩ S) = 1 or is close to 1, where D =

⊗d
i=1[ai, bi]. Let Li = bi − ai.

2. (UD). Generate a set of N quasi-random numbers, Q0 = {qw = (qw1
, . . . , qwd

), w =
1, 2, · · · , N} that are uniformly scattered over D. Set t=0.

3. (random rotation). Generate d mutually independent vi, where every vi is uniformly
distributed over [0, Li]. Use vt = (v1, . . . , vd) to perturb Q0 into X = {x1, . . . ,xN},
where xw = (xw1

, . . . , xwd
), xwi

= qwi
+ vi if ai ≤ qwi

+ vi ≤ bi; otherwise, xwi
=

qwi
+ vi − Li + ai. Set X is the candidates’ pool, and let t=t+1.

4. (likelihood). For xw ∈ S, compute Ow = f(xw), and for xw ̸∈ S, set Ow = 0. Then

scale {Ow, 1 ≤ w ≤ N} into likelihood (p1, · · · , pN ), and pi = Oi/
∑N

1 Ow.
5. (sample selection). Select m < N random samples from X based on the weights

(p1, · · · , pN ). Denote the chosen sample batch as E t = {yt(1), · · · yt(m)}, where t
represents the iteration clock.
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6. (iteration) After repeating Step 3 to Step 5 n times, we have n batches of samples,
E t, 1 ≤ t ≤ n.

Because quasi-random numbers are deterministic, samples of E t are dependent. How-
ever, every candidates’ pool is independent of other candidates pools, hence taking one
yt(wj) from every E t constitute an IID samples: Bb = {y1(w1), · · · , yn(wn), y

j(wj) ∈ Ej}.
There are mn different such Bb, which is called a RLS bootstrap sample. Let Fn(Bb) be the

empirical distribution of Bb and let θ̂b = θ̂(Fn(Bb)) be the estimate of θ based on Fn(Bb),

where θ = θ(π) is any parameter of interest. After a large number, say B, θ̂b have been

obtained, the θ and its Monte Carlo error are estimated, respectively by θ̂ and BSE, where

θ̂ =
1

B

B∑
b=1

θ̂b, and BSE =

√√√√(1/B)

B∑
b=1

(θ̂b − θ̂)2. (1)

There are many good options for choosing Q0, and we settle with sets of Good Lat-
tice Points (GLP). A d-dimensional GLP set G = {(gij), 1 ≤ i ≤ N} is generated by a
generating vector, (N ;h1, . . . , hd), as follows:

gij = ihj(mod N), 1 ≤ j ≤ d,

where 1 = h1 < h2 < . . . < hd < N , and N is mutually prime with every hj . The modulo
operation ensures that 1 ≤ gij ≤ N . A linear transformation then converts G into Q0 over
D. One-dimensional GLP set is {(2i− 1)/2N, 1 ≤ i ≤ N}.

3 Numerical Examples
We use two examples to illustrate the performance of RLS in comparison with other

samplers. The first one is the equally weighted mixture of two univariate normal pdf:
N (1, 1) and N (3, 2).

Example 1.
We compare RLS with two IID samplers: (1) the pdf-specific rnorMix of R package ”nor-
malmix”, and (2) the general-purpose SIR using t-distribution of 2 degree of freedom as
the proposal pdf. In addition, the slice sampler (a MCMC) is also compared.

For RLS, the size of GLP is N = 800 with m = 60 samples per E t. The sample
size is 300 for all four samplers. Once 300 samples are drawn by a sampler, they are

bootstrapped B = 500 times to compute the θ̂ (mean column) and BSE (SD column) from
the B estimates. The parameters of interest are mean, variance, median, first quartile and
third quartile. The results are shown in Table 1.

In terms of biases, RLS is the best among four competing samplers. The variance
estimate of SIR is not acceptable, though its other biases are not this bad; explanations of
SIR’s poor performance include inefficient proposal pdf plus small sample size. The SDs
of SIR are also too small to be correct. Because norMix is a well-documented sampler, its
SDs are considered to be correct. The SDs of RLS are on par or 10% smaller than those
of norMIX. The accuracy of slice is quite on par with norMIX.

Example 2.
Next we consider an 8-dimensional symmetric Kotz-type distribution, and there is no
known algorithm to sample from its kernel, which is as follows:

f(x) ∝ |Σ|−1/2[(x− µ)′Σ−1(x− µ)]I−1 exp{−b[(x− µ)′Σ−1(x− µ)s]}.
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When I = 1, b = 0.5, and s = 1, it is the multivariate normal distribution. Here we set
I = 3, s = 2, b = 0.5, µ = (0, 0, 0, 0, 0, 0, 0, 0, 0)T , and

Σ =



7.1 0.4 −0.3 −0.3 −0.3 −0.2 −0.4 −0.3
0.4 6.3 −0.8 −0.2 −0.1 −0.2 0.0 −0.3

−0.3 −0.8 6.8 −0.7 −0.3 −0.6 −0.4 0.4
−0.3 −0.2 −0.7 5.8 0.1 0.1 0.0 −0.5
−0.3 −0.1 −0.3 0.1 6.8 −0.3 −0.2 −0.4
−0.2 −0.2 −0.6 0.1 −0.3 6.3 −0.4 0.0
−0.4 0.0 −0.4 0.0 −0.2 −0.4 5.6 0.0
−0.3 −0.3 0.4 −0.5 −0.4 0.0 0.0 5.3


.

As shown in Fang, Kotz, and Ng (1990), µ is the mean vector and the covariance matrix

is r−1/s

rank(Σ)
Γ((2I+d)/2s)

Γ((2I+d−2)/2s)
Σ.

Let the compact cubeD have lower bounds {−5.1,−4.8,−4.9,−4.6,−4.9,−4.8,−4.5,−4.4}
and upper bounds {5.1, 4.8, 4.9, 4.6, 4.9, 4.8, 4.5, 4.4}, respectively. The generating vector
(3997; 1, 3888, 3564, 3031, 2311, 1417, 375, 3211) is chosen from Hua and Wang [2]. For this
example, RLS selects one sample from every pool, thus it generate IID samples. From
R = 200 replications of 500 samples of RLS, we compute the average and standard devia-
tion of the estimates. Average biases of RLS are listed in Table 2, and the MCE is listed
in Table 3. With only 500 samples to estimate 64 covariances and 8 means, RLS performs
very well. RLS’s average biases for the mean vector are ±0.004 and the average biases for
the covariances matrix are all within ±0.056. It would be difficult to implement MCMC
algorithms for this example. For MH, a good 8-dimensional proposal distribution is hard
to find. For SIR, we could use an 8-dimensional t-distribution as the proposal pdf without
knowing the suitability. Moreover, since the univariate full conditionals are unknown, the
Gibbs sampler must use either slice within Gibbs or MH within Gibbs; both implementa-
tions are complicated. Only the slice sampler can be implemented for a comparison, and
the results are listed in Table 4 and Table 5. Based on Table 2-5, RLS achieves about the
same average accuracy as the slice sampler, nevertheless, RLS is four times more consistent

Table 1: The comparison among RLS, slice sampler, SIR and R-sampler norMix

Sampler RLS Slice Sampler
mean SD bias true values mean SD bias

mean 1.9786 0.1018 -0.0214 2 2.0117 0.1094 0.0117
var 3.4978 0.3057 -0.0022 3.5 3.5633 0.2898 0.0633

0.25Q 0.6747 0.1023 -0.0104 0.6852 0.5272 0.1062 -0.158
med 1.6703 0.1229 0.0036 1.6667 1.6704 0.1174 0.0038
0.75Q 3.0646 0.1915 -0.0269 3.0915 3.3375 0.249 0.246

SIR R-sample norMix
mean SD bias mean SD bias

mean 1.7248 0.0562 -0.2752 1.9725 0.1054 -0.0275
var 1.0098 0.1048 -2.4902 3.4102 0.3202 -0.0898

0.25Q 1.0983 0.0725 0.4132 0.6772 0.0853 -0.008
med 1.742 0.0725 0.0754 1.6652 0.143 -0.0015
0.75Q 2.2968 0.0684 -0.7947 2.9313 0.2937 -0.1602
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Table 2: Average bias of the mean vector and the covariance matrix by RLS

Cov
x1 x2 x3 x4 x5 x6 x7 x8

x1 0.025 0.050 -0.001 -0.006 0.048 -0.056 0.002 0.039
x2 0.050 0.030 0.001 -0.006 0.049 -0.056 -0.002 0.040
x3 -0.001 0.001 -0.020 0.002 -0.003 0.006 0.006 -0.004
x4 -0.006 -0.006 0.002 -0.020 -0.009 0.006 0.000 -0.006
x5 0.048 0.049 -0.003 -0.009 0.026 -0.051 -0.002 0.039
x6 -0.056 -0.056 0.006 0.006 -0.051 0.036 0.000 -0.039
x7 0.002 -0.002 0.006 0.000 -0.002 0.000 -0.016 0.000
x8 0.039 0.040 -0.004 -0.006 0.039 -0.039 0.000 0.012

Mean 0.000 -0.001 0.004 0.000 0.001 0.001 0.001 -0.001

The average biases are calculated from 200 repetitions of RLS simulation, each of size 500.

Table 3: MCE of the estimates of the mean vector and the covariance matrix by RLS

Cov
x1 x2 x3 x4 x5 x6 x7 x8

x1 0.137 0.113 0.093 0.082 0.115 0.123 0.084 0.098
x2 0.113 0.121 0.082 0.078 0.110 0.113 0.076 0.094
x3 0.093 0.082 0.124 0.085 0.088 0.090 0.086 0.083
x4 0.082 0.078 0.085 0.104 0.079 0.077 0.074 0.077
x5 0.115 0.110 0.088 0.079 0.126 0.114 0.077 0.094
x6 0.123 0.113 0.090 0.077 0.114 0.128 0.078 0.101
x7 0.084 0.076 0.086 0.074 0.077 0.078 0.098 0.079
x8 0.098 0.094 0.083 0.077 0.094 0.101 0.079 0.105

Mean 0.086 0.079 0.064 0.059 0.081 0.086 0.060 0.070

The MCEs are calculated from 200 repetitions of RLS simulation, each of size 500.

Table 4: Average bias of the mean vector and the covariance matrix by the slice sampler

Cov
x1 x2 x3 x4 x5 x6 x7 x8

x1 -0.050 -0.003 0.002 0.002 0.007 0.002 0.008 0.003
x2 -0.003 -0.032 0.015 0.000 -0.005 -0.004 0.004 0.002
x3 0.002 0.015 -0.036 0.001 0.007 0.004 0.004 -0.008
x4 0.002 0.000 0.001 -0.031 -0.003 0.002 0.002 0.006
x5 0.007 -0.005 0.007 -0.003 -0.043 0.002 -0.002 -0.001
x6 0.002 -0.004 0.004 0.002 0.002 -0.042 0.004 0.001
x7 0.008 0.004 0.004 0.002 -0.002 0.004 -0.032 0.003
x8 0.003 0.002 -0.008 0.006 -0.001 0.001 0.003 -0.028

mean -0.001 0.003 -0.003 0.001 0.002 -0.006 0.002 -0.002

The average biases are calculated from 200 repetitions of the slice sampler, each of size 500.

than the slice sampler because the MCEs of RLS are about a quarter of those of the slice
sampler.
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Table 5: MCE of the estimates of the mean vector and the covariance matrix by the slice
sampler

Cov
x1 x2 x3 x4 x5 x6 x7 x8

x1 0.302 0.194 0.202 0.180 0.202 0.188 0.171 0.170
x2 0.194 0.262 0.188 0.174 0.186 0.172 0.165 0.154
x3 0.202 0.188 0.291 0.177 0.192 0.184 0.170 0.165
x4 0.180 0.174 0.177 0.231 0.169 0.165 0.154 0.147
x5 0.202 0.186 0.192 0.169 0.289 0.184 0.168 0.163
x6 0.188 0.172 0.184 0.165 0.184 0.266 0.162 0.156
x7 0.171 0.165 0.170 0.154 0.168 0.162 0.221 0.141
x8 0.170 0.154 0.165 0.147 0.163 0.156 0.141 0.211

mean 0.213 0.190 0.204 0.180 0.204 0.193 0.174 0.168

The MCEs are calculated from 200 repetitions of slice samples each of size 500.

4 Discussion
In terms of sampling approach, RSL is similar to SIR but with some critical differences.

SIR uses a fixed and huge set of pseudo-random samples as the pool of candidates, while
RLS selects from much smaller and randomly rotated quasi-random sequences. Another
advantage of RLS is that its pool size does not depend on the sample size, while SIR requires
the pool size to be 80 to 100 folds of the sample size. For convergence, SIR requires that
the ratio of pool size to sample size tends to infinity (N/n → ∞), while RLS needs only
N → ∞. In theory, the uniformity of UD enables RLS to perform a thorough exploration
of the support, while the efficiency of SIR will depend on the efficacy of the proposal
pdf that produces the candidates’ pool. Rotating the pool by an independent increment
not only maintains the uniformity of the candidates but also makes the candidates’ pools
independent from iteration to iteration. Computations of both the GLP set and the random
rotation are less costly than generating multivariate pseudo-random numbers. In short,
RLS combines the idea of randomized quasi-random numbers, with the IID samples of SIR
into a general-purpose sampler. The unique features of RLS include:

1. It can sample from probability kernels, that is, unnormalized densities.
2. It generates IID samples.
3. Every sample is a result of a global search over the entire support, which makes

RSL not getting stuck in a locality. Therefore, sampling multimodal kernels becomes
efficient.

4. It can sample multivariate distributions whose components are highly correlated be-
cause RLS dose not sample componentwise.

5. The sampling task can be easily partitioned and executed in a cluster of computers.
Every computer can independently rotate the GLP and sample from them.

Taking multiple samples from every candidates’ pool rather than selecting only one sample,
RLS approximates the MCEs and reduces biases straightforwardly. In addition, RLS does
not need burn-in and it is very easy to program. Because low-discrepancy sequences exit
only over compact regions, RLS only generates samples within a finite region. Remedies
for this issue exist. Monte Carlo always represents a finite approximation with the hope
that the error of finiteness is acceptable; numerical results have shown that RLS achieves
respectable accuracy and its reproducibility is on par with the best pdf-specific samplers.
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Abstract In this paper, under the assumption of normality, we give the comparison of unbiased estimator under
the Pitman’s measure of closeness (PMC). Its applications in linear regression are also discussed.
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model

1 Introduction
It is customary to apply mean squared error (MSE) and Mean squared errormatrix (MSEM) as
the criteria of preference of one estimator over the other for estimating a parameterθ . However,
[1] have show that an estimator may be superior over another estimator in the sense of MSE but
may be poorly in the sense of more intrinsic criteria such as Pitman’s measure of closeness (PMC)
[2]. So as a meaningful alterative criterion to MSE (MSEM), PMC has been discussed by many
researches, such as, Keating and Mason [3], Ghosh and Sen [4], Nayak [5] and Keating et al. [3].

Many researches discussed the linear estimators in the sense of PMC; such as; Mason et al.
[6], Peddada and Khattree [7], Fountain and Keating [8], Fountain [9], Wang and Yang [10], and
Yan [12]. Some sufficient and necessary conditions for the determination of the PMC of two linear
estimators were got in Mason et al. [6]. Yan [12] studied the comparison between the two linear
estimators and obtained some simple and clear arguments for them. However, in practice, there are
a few estimators which are satisfied the conditions which Mason et al. and Yan [12] have given in
their’s paper.

Fountain and Keating [8] compared two unbiased linear estimator in the PMC sense. Yan
[12] compared two estimators in the PMC sense, but there results is not very good. To the best of
our knowledge, there has not been any comparison between the non-linear unbiased estimator yet.
Our goal in this paper is to present the comparison between the two unbiased estimator in the PMC
sense.

The rest of the paper is organized as follows. The comparison between two unbiased estima-
tors under the PMC sense is given in Section 2. Some applications for the theorem given in Section
2 in linear regression model are given in Section 3. Some conclusion remarks are given in Section
4.

2 Main results
Firstly, we give definitions of PMC, MSE, and MSEM below.
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Definition 2.1. Let θ̂1 and θ̂2 be two estimators of the unknown p-dimensional vectorθ . The
PMC of θ̂1 relative toθ̂2 in estimatingθ under a loss functionL(.,θ ) is defined asPr(θ̂1, θ̂2,θ ) =
Pr(∆(θ̂1, θ̂2) ≥ 0), where

∆(θ̂1, θ̂2) = L(θ̂2,θ )−L(θ̂1,θ ) (1)

In this paper, we consider the quadratic loss functionL(θ̂ ,θ ) = (θ̂ −θ )′(θ̂ −θ ).

Definition 2.2. θ̂1 is said to dominatêθ2 for all θ ∈ Θ in PMC (under the loss functionL(.,θ ), for
some parameter spaceΘ), if

Pr(θ̂1, θ̂2,θ ) = Pr(∆(θ̂1, θ̂2) ≥ 0) ≥
1
2
, f or all θ ∈ Θ (2)

Definition 2.3. Let θ̂1 andθ̂2 be two estimators of the unknown p-dimensional vectorθ , then the
mean squared error matrix (MSEM) and mean squared error (MSE) are defined as follows:

MSEM(θ̂) = E{(θ̂ −θ )(θ̂ −θ )′} (3)

and
MSE(θ̂) = E{(θ̂ −θ )′(θ̂ −θ )} (4)

respectively.

Definition 2.4. θ̂1 is said to dominatêθ2 for all θ ∈ Θ in MSEM and MSE criteria, if

MSEM(θ̂1)−MSEM(θ̂2) < 0, MSE(θ̂1)−MSE(θ̂2) < 0 (5)

Now we give the main results of this paper.

Theorem 2.1.Let β̂1 andβ̂2 be two unbiased estimators of the unknown p-dimensional vectorβ ,
β̂1 ∼ N(β ,σ2M), β̂2 ∼ N(β ,σ2N), σ2 is a known constant,M andN are two known positive def-
inite matrix andM < N. Then we have estimator̂β1 is superior over estimator̂β2 in the PMC sense.

Proof. By the definition 2.1, we obtain the PMC ofβ̂1 relative toβ̂2 as follows:

Pr(β̂1, β̂2,β ) = Pr{(β̂1−β )′(β̂1−β ) ≤ (β̂2−β )′(β̂2−β )} (6)

Defineζ = (σ2M)−1/2(β̂1−β ) andη = (σ2N)−1/2(β̂2−β ), then we obtainζ ∼ N(0, I) andη ∼
N(0, I). Now we can simply Equation (6) as follows:

Pr(β̂1, β̂2,β ) = Pr{ζ ′Mζ ≤ η ′Nη}
= Pr{ζ ′Mζ −η ′Mη −η ′(N −M)η ≤ 0}

≥ Pr{ζ ′Mζ −η ′Mη ≤ 0} (7)

SinceM is a positive definite matrix, there exists an orthogonal matrixH such that

M = H ′ΛH, Λ = diag(λ1,λ2, ...,λp) (8)

whereλ1 ≥ λ2 ≥ ... ≥ λp is the eigenvalues ofM.
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Then defineζ̃ = Hζ , η̃ = Hη, we haveζ̃ ∼ N(0, I) andη̃ ∼ N(0, I). Thus, we obtain

Pr(β̂1, β̂2,β ) ≥ Pr{ζ̃ ′Λζ̃ − η̃ ′Λη̃ ≤ 0} (9)

Now we calculate the probability of

Pr{ζ̃ ′Λζ̃ − η̃ ′Λη̃ ≤ 0} (10)

Firstly, denoteζ̃ = δ2 andη̃ = −δ1, then byζ̃ ∼ N(0, I) andη̃ ∼ N(0, I), we obtainδ1 ∼ N(0, I)
andδ2 ∼ N(0, I). Then Equation (10) is equal to

Pr{ζ̃ ′Λζ̃ − η̃ ′Λη̃ ≤ 0} = Pr{δ ′
2Λδ2−δ ′

1Λδ1 ≤ 0} (11)

Sinceδ1 ∼ N(0, I) andδ2 ∼ N(0, I), we may denotẽζ = δ1 andη̃ = δ2, then we have

Pr{ζ̃ ′Λζ̃ − η̃ ′Λη̃ ≤ 0} = Pr{δ ′
1Λδ1−δ ′

2Λδ2 ≤ 0} (12)

Thus By Equations (10)-(12), we have

Pr{δ ′
2Λδ2−δ ′

1Λδ1 ≤ 0} = Pr{δ ′
1Λδ1−δ ′

2Λδ2 ≤ 0}

= 1−Pr{δ ′
1Λδ1−δ ′

2Λδ2 ≥ 0}

(13)

So we have

Pr{ζ̃ ′Λζ̃ − η̃ ′Λη̃ ≤ 0} = Pr{δ ′
2Λδ2−δ ′

1Λδ1 ≤ 0} =
1
2

(14)

Thus,we obtain

Pr(β̂1, β̂2,β ) ≥
1
2

(15)

That is to say estimator̂β1 is superior over estimator̂β2 in the PMC sense.

Remark 2.1. The conditions in Theorem 2.1. satisfied, if we addedM = N, then we can say that
the estimator̂β1 is equivalence to estimator̂β2 in the PMC sense, that is

Pr{(β̂1−β )′(β̂1−β ) ≤ (β̂2−β )′(β̂2−β )} =
1
2

and

Pr{(β̂2−β )′(β̂2−β ) ≤ (β̂1−β )′(β̂1−β )} =
1
2

Remark 2.2. The conditions given in Theorem 2.1 is a sufficient condition of the estimatorβ̂1 is
superioroverβ̂2 in the PMC sense.

Remark 2.3. When the conditions in Theorem 2.1. is satisfied, then the estimator isβ̂1 is superior
over the estimatorβ̂2 in the MSEM and MSE sense.

Using thisTheorem we will easy proof the following theorem.

Theorem 2.2.Suppose that the random vectorβ̂ has a multivariate normal distribution with mean
β and covariance. Thena′β̂ is the best PMC linear unbiased estimator ofβ if and only if a′β̂ is
the best linear unbiased estimator ofβ .
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Remark 2.4. The proof of Theorem 2.2 can also obtained by Fountain and Keating [8]. This The-
orem is shown in the linear estimators, the best linear unbiased estimator is a best estimator under
the PMC sense. But this only limit in the linear estimators.

Theorem 2.3.Let T1 be ap×1 statistic andT2 be aq×1 statistics, the joint PDF isECp+q(u,Σ,Φ),

whereu = (β ′,0′)′, β is ap×1 vector,Σ is a known positive definite matrix andΣ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Then for all β ∈ Rp, we havePr(β ∗,T1,β ) > 1/2, that is the covariance improved estimatorβ ∗ is
better than T1 in the PC criterion, whereβ ∗ = T1−Σ12Σ−1

22 T2 is the covariance improved estimator
of β .

Remark 2.5. The proof of this Theorem can also obtained in Wang and Yang [11].

Theorem 2.4. Let β̂1 and β̂2 be two unbiased estimators of the unknown p-dimensional vector
β , β̂1 ∼ N(β ,σ2M), β̂2 ∼ N(β ,σ2N), σ2 is a known constant,M andN are two known positive
definite matrix. Ifβ̂1 is superior over the estimatorβ̂2 in the MSEM sense, then we have estimator
β̂1 is superior over estimator̂β2 in the PMC sense.

Proof. Since
MSEM(β̂1) = E{(β̂1−β )(β̂1−β )′} = Cov(β̂1) (16)

similarly, we obtain
MSEM(β̂2) = E{(β̂2−β )(β̂2−β )′} = Cov(β̂2) (17)

Sinceβ̂1 is superior over the estimatorβ̂2 in the MSEM sense, we have

MSEM(β̂1)−MSEM(β̂2) < 0 (18)

Then by Equations (16)-(18), we have

σ2M = Cov(β̂1) < Cov(β̂2) = σ2N ⇒ M < N (19)

Thus using Theorem 2.1., we proof this theorem.

Remark 2.6. The inverse of this theorem is not true.

3 Applications in linear regression models
In this section, we will apply theorem 2.1 to compare the unbiased estimator in linear regression
models.

1. General linear regression model

Consider the general linear regression model

Y = Xβ + ε (20)

whereY is ann× 1 vector of observation,X is ann× p known matrix of rankp, β is a p× 1
vector of unknown parameters,ε is ann×1 vector of disturbances with expectationE(ε) = 0 and
variance-covariance matrixCov(ε) = σ2V , V > 0 is a known positive definite matrix.

The ordinary least squares estimator (OLSE) is given as follows:

β̂OLSE = (X ′X)−1X ′Y (21)
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By Wang and Show [17], they show thatβ ∗ is the best linear unbiased estimator ofβ , whereβ ∗ is
given as follows:

β̂ ∗ = (X ′V−1X)−1X ′V−1Y (22)

Sinceβ ∗ is the best linear unbiased estimator ofβ , then using Theorem 2.1, we can see thatβ ∗ is
superiorover OLSE (̂βOLSE ) in the PMC sense.

Theorem 3.1. For the linear regression model (20),Pr(β ∗, β̂OLSE ,β ) ≥ 1
2, that is for everyβ and

σ2, the best linear unbiased estimator (β ∗) is superior to the OLSE (̂βOLSE ) in the PMC sense.

2. Restricted linear regression model

In model (20) we considerV = I, and consider Equation (20) has following linear restrictions:

Rβ = r (23)

where the matrixR is m× p and of full row rankm < p, r is anm×1 vector and bothR andr are
known.

The restricted least squares estimator (OLSE) is given as follows:

β̂RLSE = β̂OLSE +(X ′X)−1R′[R(X ′X)−1R′]−1(r−Rβ̂OLSE ) (24)

It is easy to compute that

E(β̂OLSE) = β , Cov(β̂OLSE) = σ2(X ′X)−1 (25)

E(β̂RLSE) = β (26)

and
Cov(β̂RLSE) = σ2(X ′X)−1− (X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1 (27)

respectively.

Obviously,
Cov(β̂RLSE) < Cov(β̂OLSE) (28)

Thus we have the following theorem:

Theorem 3.2.For the linear regression model (20) andV = I, Pr(β̂RLSE , β̂OLSE ,β ) ≥ 1
2, the RLSE

(β̂RLSE ) is superior to the OLSE (̂βOLSE ) in the PMC sense.

3. Linearregression model with prior information

For the linear regression model (20) letV = I andβ has following prior information

r = Rβ + e, e ∼ (0,σ2W ) (29)

whereR is a j × p known matrix of rankj, e is a j ×1 vector of disturbances with mean 0 and
dispersion matrixσ2W , W is supposed to be known and positive definite, thej×1 vectorr can be
interpreted as a random variable with expectationE(r) = Rβ . Therefore the restriction (11) does
not hold exactly but in the mean, and we supposer to be known, that is to be realized value of the
random vector, so that all the expectations are conditional onr [13]. In the following discussions,
we do not mention this separately. Furthermore, it is also supposed that the random vectorε is
stochastically independent ofe.
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The mixed estimation (ME) proposed by Durbin [16], Theil and Goldberger [14] and Theil
[15] is given as follows

β̂ME = (X ′X +R′W−1R)−1(X ′Y +R′W−1r) (30)

It is easy to compute that

E(β̂ME) = β , Cov(β̂ME) = σ2(X ′X +R′W−1R)−1 (31)

By [13], wehave

Cov(β̂ME)−Cov(β̂OLSE)

= −σ2(X ′X)−1R′[(X ′X)−1 +RW−1R′]−1R(X ′X)−1 < 0 (32)

Then we have the following theorem

Theorem 3.3. For the linear regression model (20) andV = I, Pr(β̂ME , β̂OLSE ,β ) ≥ 1
2, the ME

(β̂ME) is superior to the OLSE (̂βOLSE ) in the PMC sense.
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Abstract The paper considers the representative points (RP) of student’s tn distribution for min-
imizing the mean of square error. Fang and He’s algorithm is applied to find its RP. We study the
convergence of this algorithm, the existence and uniqueness of RP of tn distribution when n ≥ 3 and
discuss applications of RP in statistical simulation. Traditional Monte Carlo, Bootstrap and Resam-
pling are the basic methods in statistical simulation based on a random sample. Fang et al.[7] firstly
proposed to use RP instead of i.i.d. random samples to construct an approximate distribution and take
the sample from the approximation for statistical inference. This paper continues to study this issue.
The statistical inference of this paper focuses on two cases: classical estimation of parameters(mean,
variance, skewness and kurtosis) and robust estimation of parameters (location parameter: mean and
median; scalar parameter: MAD and IQR). Our results indicate that the new method once again can
significantly improve the accuracy of the estimator of the statistics, and accelerates the converging
speed of the statistics.

Keywords Quasi-Monte Carlo methds; Representative points; Statistical simulation; t distribution;
Resampling, Robust estimation

1 Introduction

One interesting problem, that is how to select a given number of representative points
(RP) to retain as much information of the population as possible, arises in many fields.
For example, Cox[2] was the first one to study this problem and he suggested a loss
function, given in (2), to measure the distortion. Fang and He[5] mentioned a project: in
order to make clothes standardization in China, they took p measurements of the body of
each of n individuals and projected these p dimensional data onto a q-dimensional region
(q = 1, 2, 3) by some methods in statistical multivariate analysis. They wanted to select
m points that best represent the data in the q-dimension region. When q = 1 the above
problem is to choose m points that give as much as possible information about a normal
distribution. The solution of points are called representation points. A similar project was
given by Flury[10]. This project concerned with the Swiss army to replace existing with
newly designed protection masks. To put the construction of new types of masks on solid
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empirical grounds, a group of anthropologists was hired to measure the heads of about 900
Swiss soldiers. 25 variables were taken, which were supposed to be of importance for the fit
of masks. This project needs the concept of representative points of a given distribution.

Suppose that a continuous random variable X has a distribution function F (x) that
has a density function f(x) and finite second moment σ2 = V ar(X). In many practical
applications, for example, signal transaction[14], we hope to use a discrete random variable
Y to approximate X. Let Y have a support set of points S(Y ) = {x1 < x2 < · · · < xm}
with a probability mass function P (Y = xj) = pj , j = 1, · · · ,m. We choose Y such that
X and Y are closest in a certain sense. In the literature, the following MSE criterion has
been widely used. Let

Qm(x) = xj , aj < x ≤ aj+1, j = 1, · · · ,m, (1)

where a1 = −∞, am+1 = ∞, aj = (xj + xj+1)/2, j = 2, · · · ,m. The loss function, which
measures the loss when we use YMSE = Qm(X) to approximate X, is defined by

Lm = L(x1, x2, · · · , xm) =
1

σ2
E(X −Qm(X))2

=
1

σ2

∞
∫

−∞

min
1≤i≤m

(x− xi)
2f(x)dx =

1

σ2

m
∑

j=1

aj+1
∫

aj

(x− xj)
2f(x)dx, (2)

where P (YMSE = xj) = P (Qm(X) = xj) = pj , and

p1 =

∫ (x1+x2)/2

−∞

f(x)dx =

∫ a2

−∞

f(x)dx,

pi =

∫ (xi+xi+1)/2

(xi−1+xi)/2

f(x)dx =

∫ ai+1

ai

f(x)dx, i = 2, · · · , m− 1,

pm =

∫ ∞

(xm−1+xm)/2

f(x)dx =

∫ ∞

am

f(x)dx. (3)

If the support set of Y enables the loss function to arrive at its minimum, this support
set is called as representative point under MSE, denoted by RP-MSE.

RP-MSE was firstly proposed by Cox[2], and then Max[14] and Bofinger[1]. Fang and
He[5] demonstrated independently and respectively the need of RP-MSE from a different
statistical background. They proposed an algorithm for searching RP-MSE of the standard
normal distribution and gave a comprehensive study on the proposed algorithm. The
RP-MSE is also called Quantizer in the signal transaction (Max[14]). Flury[10] called
RP-MSE as Principal Points and gave some results on elliptically contoured distributions.
Fu [11][12] considered RP of the Gamma distribution and the Weibull distribution, and
Fei[8][9] discussed more general cases: the distribution family of Pearson, and gave sets
of RP-MSE for several important distributions (Negative exponential distribution, χ2-
distribution and F distribution) and some properties of RP-MSE. Yamamoto and Shinozaki
[18] discussed RP-MSE (only for the case of m = 2) for the t distribution. Fang and Wang
[6] introduced the definition and applications of RP in detail in Chapter 4 of the book.
Fang etal.[7] recalculated the RP of standard normal distribution and further studied
its application in the statistical simulation. However, so far there is no paper to give
a systematical discussion on RP-MSE of the t distribution. It is well known that the t
distribution plays an important role in Statistics. In the remaining sections, we will discuss
RP of the t distribution and applications in statistical simulation.
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Ross[17] gives some background knowledge on stochastic simulation. Bootstrap method
proposed by Efron[3] is a pioneer of resampling technique widely used in statistical sim-
ulation. See Efron and Tibshiranier [4] for the details. The resampling techniques also
use a discrete random variable Y to approximate a given continuous random variable X,
and resampling is from the population Y . Denote the support set of Y by S(Y ) = {x1 <
x2 < · · · < xm}, and the probability mass function of Y is given by P (Y = xj) = pj , j =
1, · · · ,m. In this paper we concern with three different kinds of methods to construct Y ,
which were indicated by Fang et al.[7].

(A) Monte Carlo methods: Generate a random samples, {x1, · · · , xm}, from the pop-
ulation F (x) by the Monte Carlo method, here x1, · · · , xm are an i.i.d. and xi ∼ F (x).
Let a random variable YMC be uniformly distributed on the sample, i.e., P (YMC = xj) =
1/m, j = 1, · · · ,m. This sample can be regarded as a set of RP, denoted by RP-MC.

(B) Quasi-Monte Carlo methods: the QMC method has been successfully used in
high-dimension integration (Niederreiter[15]) and experimental design (Fang and Wang
[6]). It is known that the set of { 2j−1

2m
, j = 1, · · · ,m} is uniformly distributed on (0,1).

By the inverse transformation method the set {xj = F−1( 2j−1
2m

), j = 1, · · · ,m}, denoted
by RP-QMC, can be regarded as a set of representative points for the population, where
F−1 is the inverse function of F . Let YQMC be uniformly distributed on xj , j = 1, · · · ,m.

(C) RP-MSE: it has been introduced before.

Fang et al.[7]’s innovation is to address the issue of randomness about RP. RP gener-
ated by (B) and (C), are not random, but fixed. Whether can RP-QMC and RP-MSE be
applied into stochastic simulation? This question cannot be solved perfectly in the long
run.Fang et al.[7] discussed the case of standard normal distribution and pointed out that
RP-QMC or RP-MSE can perform better. A natural question is whether we can obtain
same conclusion for other distribution, especially for another important distribution-tn
distribution.

Our present discussion is organized as follows: Section 2 deals with the existence and
uniqueness of RP-MSE for t distribution. The third section concerns with estimation of
the population mean, variance, skewness and kurtosis of the t distribution by the use of
the mean, variance, skewness and kurtosis of Y . Then we employ the resampling technique
to estimate the above population parameters and compare their performance among Y =
YMC , YQMC and YMSE , in resampling; and we further discuss their performance in the
robust estimation. The last section gives conclusion and proposes some further studies.

2 MSE Representative Points of Student’s t-distribution

In this section we discuss how to find the representative points (RP-MSE) for the t
distribution with n degrees of freedom, i.e. X ∼ tn. The probability density function of
X is

t(x) =
Γ(n+1

2
)√

nπΓ(n
2
)
(1 +

x2

n
)−

n+1

2 ≡ c(n)(1 +
x2

n
)−

n+1

2 . (4)

Let T (x) be the cumulative distribution function of tn. It is well known that the mean,
variance, skewness and kurtosis of X are

E(X) = 0, V ar(X) =
n

n− 2
, Sk(X) = 0, and Ku(X) =

6

n− 4
, respectively. (5)

Consequently, necessary conditions for existence of variance, skewness and kurtosis of X
are n > 2, n > 3 and n > 4, respectively. In the following we always assume n > 2 as the
definition of RP-MSE needs existence of the variance.
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Li and Flury [13] proposed a sufficient condition, f ∗f ′′−2(f ′)2 < 0, for the uniqueness
of RP (they called as principal points) about any symmetric distribution with a density

function f(x). For t-distribution, it is easy to find that t∗t′′−2(t′)2 = −n (n+1)(x2+1)
(n+x2)2

t(x)2 <

0, which implies that the t-distribution has a unique set of RP with degrees of freedom
n > 2. Furthermore, as the density function (4) is an even function, it must have xj =
−xm−j+1, 1 ≤ j ≤ l + 1. The loss function can be denoted as L(x1, · · · , xl). When
n = 2l+ 1 is odd, we need to find x0 = 0 < x1 < · · · < xl; when n = 2l is even we need to
find 0 < x1 < x2 < · · · < xl. Let ∂L(x1, · · · , xl)/∂xi = 0, i = 1, · · · , xl and we obtain two
kinds of system of equations as follows: When m = 2l is even, the system of equations are







G(0)−G(x1+x2

2
) = x1[T (

x1+x2

2
)− T (0)]

G(xk−1+xk

2
)−G(xk+xk+1

2
) = xk[T (

xk+xk+1

2
)− T (xk−1+xk

2
)], 2 ≤ k ≤ l − 1

G(xl−1+xl

2
) = xl[1− T (xl−1+xl

2
)].

(6)

When m = 2l + 1 is odd, the system of equations are






G(x1

2
)−G(x1+x2

2
) = x1[T (

x1+x2

2
)− T (x1

2
)]

G(xk−1+xk

2
)−G(xk+xk+1

2
) = xk[T (

xk+xk+1

2
)− T (xk−1+xk

2
)], 2 ≤ k ≤ l − 1

G(xl−1+xl

2
) = xl[1− T (xl−1+xl

2
)],

(7)

where

G(x) =
c(n)n

n− 1
(1 +

x2

n
)−

n−1

2 =
nt(x)

n− 1
(1 +

x2

n
). (8)

We adopt the ideas from Fang and He[5], and use a numerical method to solve the system of
equations (6) and (7), respectively. Firstly, we choose an appropriate initial value x1 > 0,
and find the solution x2 from the first equation; then for these two values x1 and x2 we
obtain x3 from the second equation; similarly, based on x2 and x3 we get x4 from the third
equation; finally, we obtain xl from the penultimate equation. On the other hand, we can
obtain another solution x∗

l by the last equation when xl−1 is given. If the difference between
xl and x∗

l is very small, x1, x2, · · · , xl are the solutions; otherwise, we modify the initial
value x1 and repeat the above processes. Fang and He[5] have proved the convergence of
this method for the normal population. We now testify existence and uniqueness about
the solutions of system of equations (6) and (7).

Being similar to the standard normal case, the system of equations (6) and (7) have
only four types of the equation. For given m, denote by xm1 < xm2 < · · · < xml and
xm0(= 0), xm1 < xm2 < · · · < xml the solutions of the system of equations (6) and (7),
respectively. When m = 2(l = 1), the system of equations (6) only has one equation, i.e.,
G(0) = x1(1 − 1

2
) = 1

2
x1, we have x21 = 2G(0) = 2n

n−1
c(n). For instance, when n = 10,

x21 = 0.8646852977. The following theorems point out the existence and uniqueness about
the solutions of system of equations (6) and (7).

Theorem 1. For any given x1 ≥ 0, the first type of equation

G(0)−G(
x1 + x2

2
) = x1[T (

x1 + x2

2
)− T (0)] (9)

has a unique solution x2 ≡ g2(x1) if and only if x1 < x21. The function g2(x1) is strictly

increasing, when x1 < x21.

Theorem 2. When n > 2, for any given x1 ≥ 0, the second type of equation

G(
x1 + x2

2
) = x2[1− T (

x1 + x2

2
)] (10)

has a unique solution x2 ≡ h1(x1), and h1(x1) is strictly increasing.
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Theorem 3. For any given x1 ≥ 0, the third type of equation

G(
x1

2
)−G(

x1 + x2

2
) = x1[T (

x1 + x2

2
)− T (

x1

2
)] (11)

has a unique solution x2 ≡ h2(x1) if and only if x1 < x31. Furthermore, h2(x1) is strictly

increasing with respect to x1 if x1 < x31.

Theorem 4. For any fixed 0 < x1 < x21, we can obtain the solution x2 = g2(x1) from

Theorem 1, then the fourth type of equation

G(
x1 + x2

2
)−G(

x2 + x3

2
) = x2[T (

x2 + x3

2
)− T (

x1 + x2

2
)] (12)

has a unique solution x3 = g3(x1) if and only if 0 < x1 < x41.

According to the above four theorems, for given x1, we can obtain in turn x2 = g2(x1),
x3 = g3(x1), . . ., xk+1 = gk+1(x1), k = 2, 3, . . . , l − 1 from the 1st, 2nd, . . ., kth equation of
(6), then the equation

G(
xk−1 + xk

2
)−G(

xk + xk+1

2
) = xk[T (

xk + xk+1

2
)− T (

xk−1 + xk

2
)] (13)

has a unique solution xk+1 = gk+1(x1) if and only if x1 < x2k,1, k = 2, 3, . . . , l − 1. A
similar conclusion is true for the system of equations (7).

Based on the above discussion, we can numerically search the value of gk(x1), k =
2, 3, . . . , l by the use of the Newton method or the method of bisection. After getting
xl−1 = gl−1(x1), we can use the same methods to determine xl = gl(x1) and x∗

l = h(xl−1)
on the basis of the last two equations of (6), respectively. Figure 1 shows the figure of
gk(x1), k = 2, 3, 4, 5, 6 for the case of m = 12 (l = 6), which indicates that xk = gk(x1) is
a strictly increasing function of x1.

Figure 2 expresses the figures about (xl−1, xl) and (xl−1, x
∗
l ) for the case of m = 2l,

l = 3, 4, 10, 13, 17. According to Figure 2, we have the following conclusions: (1) system of
equations (6) has a unique solution; (2) for any given x1 > 0, when xl is significantly less
than x∗

l , we ought to increase the initial value x1 appropriately because xl−1 is a strictly
increasing function of x∗

1. Similarly, when xl is larger than x∗
l , we should decrease the

initial value x1 appropriately. Obviously, a similar conclusion can be given for system of
equations (7).

3 Stochastic Simulation and Resampling

Statistical simulation[17] has played an important role in statistical research and ap-
plications. Monte Carlo methods and resampling technique are the basic methods in
statistical simulation. Let X ∼ F (x), where F (x) is the population distribution func-
tion and let Y be an approximate population to X with a probability mass distribution
P (Y = xj) = pj , j = 1, · · · ,m. We choose the L2-distance between FY (x) and F (x)
as a suitable criterion (refers to [6], section 1.4.2) to measure their closeness, which was
proposed by Fang et al.[7]. The L2-distance is defined by

D2(F, FY ) =





+∞
∫

−∞

|FY (x)− F (x)|2dx





1/2

. (14)
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3.1 Preliminary Comparisons among three kinds of representative

points

As we employ three discrete variables YMC , YQMC and YMSE to be approximate pop-
ulations, their statistical properties should be close to the population ones. In particular
their mean, variance, skewness and kurtosis should be close to the population ones. We
choose the population X ∼ tn, n = 10. It is known that mean E(X) = 0, variance
V ar(X) = σ2 = n

n−2
= 1.25, the coefficient of Skewness (Sk) Sk(X) = 0 and the coeffi-

cient of Kurtosis (Ku) Ku(X) = 6
n−4

= 1.

Let Y be a discrete distribution with P (Y = bi) = pi, i = 1, · · · ,m. Then the above
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statistics of Y can be calculated by

E(Y ) =

m
∑

i=1

bipi ≡ µb, V ar(Y ) =

m
∑

i=1

(bi − µb)
2pi ≡ σ2

Y ,

Sk(Y ) =
1

σ3
Y

m
∑

i=1

(bi − µb)
3pi, Ku(Y ) =

1

σ4
Y

m
∑

i=1

(bi − µb)
4pi − 3.

(15)

As RP-QMC and RP-MSE of t-distribution are symmetric about the origin, it is
easy to see that E(YQMC) = 0, E(YMSE) = 0, Sk(YQMC) = 0, Sk(YMSE) = 0. Therefore,
we only need to consider comparisons of variance and kurtosis between X and Y , where
Y = YMC , YQMC , YMSE . Choosing m= 5, 10, 20, 30, 31, 32, 33, 34, 35, we use the variance
and kurtosis of Y to estimate V ar(X) = 1.25 and Ku(X) = 1.

Table 1: Bias of variance and kurtosis between the approximate distribution and t10
m Category 5 10 20 30 31 32 33 34 35

RP-MC -1.0129 -0.4716 -0.0294 -0.2880 0.2022 0.7861 -0.5098 -0.2070 -0.1695
Variance RP-QMC -0.3795 -0.2213 -0.1283 -0.0931 -0.0907 -0.0885 -0.0863 -0.0843 -0.0824

RP-MSE -0.1238 -0.0377 -0.0106 -0.0049 -0.0046 -0.0044 -0.0041 -0.0039 -0.0037
RP-MC -2.4832 -2.2750 -0.9661 -1.0062 0.2069 -0.9665 -0.9440 -1.4461 -1.7677

Kurtosis RP-QMC -2.0830 -1.6406 -1.2743 -1.0892 -1.0751 -1.0616 -1.0487 -1.0362 -1.0242
RP-MSE -1.2002 -0.5277 -0.1991 -0.1060 -0.1006 -0.0956 -0.0910 -0.0867 -0.0827

Table 1 shows the biases of variance and kurtosis among X and Y for nine sizes of
the approximate populations, where Y = YMC , YQMC , YMSE . According to the results in
Table 1, we may draw the following conclusions: (1) the estimator is more accurate if m
increases, so we should choose a suitable m; (2) for RP-MC method, the testing results are
rather poor and YMC is not a good choice for approximate population; (3) for estimation
of the variance and kurtosis, RP-MSE has the prominent performance.

RP-MSE has a better performance than others. Table 2 presents the values of
D2(F, FYQMC

) and D2(F, FYMSE
) (refer to (14)) based on the different m. Obviously,

the distribution function of YMSE is closer to the population distribution function F . As
YMC strongly depends on a random sample and most of D2(F, FYMC

) are significantly
larger than D2(F, FYQMC

) and D2(F, FYMSE
), we do not list D2(F, FYMC

) in the table.

Table 2: Square L2-distance between the approximation and population distribution
m 5 10 20 30 31 32 33 34 35

D2(F, FYQMC
) 0.173341 0.039896 0.009127 0.003836 0.003576 0.003341 0.003128 0.002934 0.002757

D2(F, FYMSE
) 0.041251 0.006392 0.001702 0.000789 0.000741 0.000697 0.000657 0.000620 0.000587

3.2 Resampling on Representative Points-Classical Estimation

In traditional stochastic simulation samples are taken from the population and are
i.i.d.. Resampling techniques takes a sample, y1, · · · , yN from an approximate distribu-
tion, FY . The bootstrap employs a random sample to form an approximate population.
However, if the samples are not good representative for the population, the bootstrap
may provide a unrobust result. Therefore, we propose to use the approximate population
constructed by RP-QMC and RP-MSE for resmapling, and the estimation accuracy for a
given statistic should be improved.
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We still consider the population distribution X ∼ t10 and estimate its mean, variance,
kurtosis and skewness. In the simulation, we choose eight sizes of RP for construction of
approximate populations, that are m = 25, 28, 30, 31, 32, 33, 34, 35 and resampling
takes from related populations of YMC , YQMC and YMSE . In order to save some space,
we only display the estimation biases when m = 35. Table3 lists respectively estimation
biases of four statistics by resampling from YMC , YQMC and YMSE for m = 35 and N =
1000, 2000, 5000, 10000, where N is the resample size. From the results in Tables, we
may address the following conclusions: (1) RP-MSE occupies absolute predominance for
estimation of variance and kurtosis; (2) RP-QMC has a good performance for estimation
of the mean and skewness. Summarize the comparisons including the results of m =
25, 28, 30, 31, 32, 33 that do not appear in the tables, into Table 4, where we can see that
RP-MSE provides more accurate estimation for the statistics in most cases. Furthermore,
the performance of RP-QMC and RP-MSE are consistently superior to that of RP-MC.

Table 3: m = 35, Classical estimation biases by resampling
Category 1000 2000 5000 10000
RP-MC -0.178981 -0.182136 -0.181027 -0.181247

Mean RP-QMC 0.000074 -0.005019 0.002974 0.000982
RP-MSE -0.005945 0.001409 -0.002814 0.000370
RP-MC -0.150406 -0.158475 -0.164127 -0.162118

Variance RP-QMC -0.083006 -0.087393 -0.083298 -0.079996
RP-MSE 0.007502 -0.002900 0.000532 0.000039
RP-MC -1.265060 -1.251296 -1.260116 -1.275396

Kurtosis RP-QMC -1.126946 -1.094984 -1.106769 -1.106414
RP-MSE -0.596670 -0.701559 -0.614099 -0.655111
RP-MC 0.405035 0.412940 0.405345 0.400693

Skewness RP-QMC -0.001272 0.013655 -0.001483 0.000420
RP-MSE 0.014134 -0.000159 -0.012804 0.001138

Table 4: The number of winner in statistical estimation
RP-MC RP-QMC RP-MSE

Mean 0 14 18
Variance 0 0 32
Kurtosis 0 0 32

Skewness 0 21 11
Total 0 35 93

3.3 Resampling on Representative Points-Robust Estimation

Classical estimation such as the sample mean, the sample variance or sample covari-
ance, can be significantly influenced by outliers, even by a single one. It often does not
provide good fits to lots of data. Robust statistics is able to address this kind of problems.
The concepts and methods of robust statistics originated in the 1950s. The technical term
“robust statistics” was coined by G. E. P. Box in 1953. Later, many statisticians such
as Huber [16], did systematically abundant works about robust estimation of parameters.
In the robust estimation, the estimations of location parameter and scalar parameter are
always important issues. Here, we focus on these estimations by using RP.

Assume that the population distribution X ∼ t6, which is a heavy-tail distribution.
We use the resmapling technique to obtain samples and estimate its location parame-
ters(median and mean) and scalar parameters(median absolute deviation and interquartile
range). Finally, the bias is calculated to be used for comparing the performance about
three kinds of RP. The above four population parameters can be estimated by the following
robust statistics respectively:
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(1) Sample median(MD):

MD = median{Xi, i = 1, 2, · · · ,m},

where {Xi, i = 1, 2, · · · ,m} is one sample based on resampling.

(2) α−Trimmed mean(TM):

TM =
1

m− 2k

m−k
∑

k+1

X(i),

where k = [mα
2
] and X(i) is the order statistic. In the statistical simulation, α = 5%, 25%.

(3) Sample median absolute deviation(MAD):

MAD = median{|Xi −MD|, i = 1, 2, · · · ,m},

where {Xi, i = 1, 2, · · · ,m} is one sample based on resampling and MD is the correspond-
ing sample median.

(4) Interquartile range: IQR = Q3 −Q1, where Q1 and Q3 are the first quartile and
third one, respectively.

Table 5: N = 1000, Robust estimation biases by resampling
m 10 20 30 31 32 33 34

RP-MC 0.410752 0.385452 0.120457 0.124145 0.118420 -0.262859 -0.130328
MD RP-QMC -0.013042 -0.004435 -0.004146 -0.014642 0.011663 0.015406 -0.002288

RP-MSE -0.005829 0.008455 -0.009243 0.015802 0.001426 -0.011904 -0.003484
RP-MC 0.610134 0.288904 0.201475 0.094749 0.181069 -0.201385 -0.04942

TM(5%) RP-QMC -0.006269 0.004060 -0.005305 -0.011542 0.012802 0.013611 -0.006398
RP-MSE -0.002848 0.005912 -0.003555 0.008602 0.003393 -0.009126 0.001689
RP-MC 0.556580 0.277243 0.199287 0.103936 0.202323 -0.239128 -0.023882

TM(25%) RP-QMC -0.007931 0.002517 -0.005849 -0.014111 0.011961 0.012959 -0.005329
RP-MSE -0.005362 0.009324 -0.007436 0.008017 0.001862 -0.007631 0.001402
RP-MC 0.422028 0.079398 -0.018518 -0.095632 0.086759 -0.001717 0.022720

MAD RP-QMC -0.051457 -0.020547 -0.013319 -0.016528 -0.010320 -0.012012 -0.007686
RP-MSE -0.055038 -0.033779 -0.016635 -0.006079 -0.008595 -0.021954 -0.015021
RP-MC 1.225935 0.396350 0.057603 -0.186916 0.082307 0.054144 0.109492

IQR RP-QMC -0.017032 0.014189 0.005119 -0.005498 0.013381 0.005289 0.004970
RP-MSE -0.025983 -0.013482 -0.010439 0.010187 0.008229 -0.015862 -0.010028

Table 5 displays the estimation biases of four statistics by resampling from YMC , YQMC

and YMSE for m = 10, 20, 30, 31, 32, 33, 34 and N = 1000, where N is the resample
size. From the results in Table, we may draw the conclusions that the performance of RP-
QMC and RP-MSE are superior to that of RP-MC, and the estimation biases of RP-QMC
and RP-MSE are very close, whose difference are almost 0.001. Therefore, from robust
estimation, we can see that RP-QMC and RP-MSE improve accuracy of estimation and
speed the convergent rate up for the statistics in most cases.

4 Conclusion

The paper concerns with the representative point (RP-MSE) of t-distribution with n
degrees of freedom, n ≥ 3. Firstly, we employ Fang and He[5]’s algorithm and prove that
this algorithm can also be applied to the t distribution perfectly. The paper proves the
existence and uniqueness of RP-MSE when n ≥ 3. In addition, we study the application of
RP in statistical simulation by using the new method that was proposed by Fang et al.[7].
We take t6 and t10 for example and consider classical estimation of the parameters (mean,
variance, skewness and kurtosis) and robust estimation of the parameters(location and
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scalar parameters). Our results once again show that the new method proposed by Fang
et al.[7], can significantly improve accuracy in the estimation of statistics, or accelerates the
converging speed of statistics. This method can be extended to other various population
distributions, including multivariate distributions population and open a new research
direction for statistical simulation.
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